تأثیر زمان هیدروترمال بر فعالیت فتوکاتالیستی پوشش‌های سلسله‌مراتبی TiO2 -WO3 ایجاد شده به روش اکسیداسیون الکترولیتی پلاسمایی- هیدروترمال روی تیتانیوم خالص

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه بوعلی سینا

2 گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه بوعلی سینا، همدان

چکیده

در تحقیق حاضر، پوشش متخلخل سلسله‌مراتبی دی‌اکسیدتیتانیوم/ تری‌اکسید‌تنگستن (TiO2 /WO3) با استفاده از هم‌افزایی روش‌های اکسیداسیون الکترولیتی پلاسمایی/ هیدروترمال روی سطح تیتانیوم خالص ایجاد شد. برای این منظور، ابتدا پوشش TiO2 توسط فرایند اکسیداسیون الکترولیتی پلاسمایی (PEO) در الکترولیت پایه فسفاتی روی زیرلایه تیتانیوم ایجاد، سپس ذرات WO3 توسط فرایند هیدروترمال روی پوشش TiO2 ایجاد گردید. تأثیر مدت زمان انجام فرایند هیدروترمال (12، 18 و 24 ساعت) بر رفتار فتوکاتالیستی پوشش‌ها مورد بررسی قرار گرفت. بررسی‌های فازی و ویژگی‌های ریزساختاری به ترتیب توسط آنالیز پراش اشعه ایکس و میکروسکوپ الکترونی روبشی گسیل میدانی انجام شد. تخریب فتوکاتالیستی متیلن بلو تحت نور مرئی در حضور پوشش‌های TiO2 -WO3 و پوشش TiO2 با یکدیگر مقایسه شدند. پوشش TiO2 خالص ایجاد شده به روش PEO، تخریب 47 درصدی متیلن بلو را نشان داد، این در حالی است که، پوشش‌ کامپوزیتی TiO2 -WO3 ایجاد شده به روش هم‌افزایی روش‌های اکسیداسیون الکترولیتی پلاسمایی/ هیدروترمال در مدت زمان 18 ساعت هیدوترمال با تخریب 83 درصدی متیلن بلو همراه بود، که می‌توان به حضور فاز WO3 و ریزساختار مناسب آن شامل تشکیل ساختار میله‌ای نسبت داد. در زمان 12 ساعت مورفولوژی شامل نانوذرات/نانومیله بود و افزایش زمان تا 18 ساعت منجر به تکامل مورفولوژی، افزایش اندازه ذرات و رشد نانو میله‌ها شد.

کلیدواژه‌ها


[1]        Y. Jiang et al., "New strategy for the in situ synthesis of single-crystalline MnWO4/TiO2 photocatalysts for efficient and cyclic photodegradation of organic pollutants," CrystEngComm, vol. 18, no. 10, pp. 1832-1841, 2016.
[2]        R. C. Pawar, Y. Pyo, S. H. Ahn, and C. S. Lee, "Photoelectrochemical properties and photodegradation of organic pollutants using hematite hybrids modified by gold nanoparticles and graphitic carbon nitride," Applied Catalysis B: Environmental, vol. 176, pp. 654-666, 2015.
[3]        S. Matongo, G. Birungi, B. Moodley, and P. Ndungu, "Pharmaceutical residues in water and sediment of Msunduzi River, kwazulu-natal, South Africa," Chemosphere, vol. 134, pp. 133-140, 2015.
[4]        S. S. Ray, R. Gusain, and N. Kumar, "Classification of water contaminants,"Carbon Nanomaterial-Based Adsorbents for Water Purification, pp. 11-36, 2020.
[5]        F. Huang, L. Chen, H. Wang, and Z. Yan, "Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma," Chemical Engineering Journal, vol. 162, no. 1, pp. 250-256, 2010.
[6]        G. Ren et al., "Recent advances of photocatalytic application in water treatment: a review," Nanomaterials, vol. 11, no. 7, p. 1804, 2021.
[7]        Y. Liu, Y. Cao, H. Lv, S. Li, and H. Zhang, "Construction of a 2D nanoplate-like MoS2/Bi2WO6 heterojunction with enhanced visible-light photocatalytic activities," Materials Letters, vol. 188, pp. 99-102, 2017.
[8]        A. Fujishima, X. Zhang, and D. A. Tryk, "TiO2 photocatalysis and related surface phenomena," Surface science reports, vol. 63, no. 12, pp. 515-582, 2008.
[9]        M. Aliofkhazraei et al., "Review of plasma electrolytic oxidation of titanium substrates: Mechanism, properties, applications and limitations," Applied Surface Science Advances, vol. 5, p. 100121, 2021.
[10]      A. K. L. Sajjad, S. Shamaila, B. Tian, F. Chen, and J. Zhang, "One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity," Applied Catalysis B: Environmental, vol. 91, no. 1-2, pp. 397-405, 2009.
[11]      C.-F. Lin, C.-H. Wu, and Z.-N. Onn, "Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems," Journal of Hazardous Materials, vol. 154, no. 1-3, pp. 1033-1039, 2008.
[12]      K. Y. Song, M. K. Park, Y. T. Kwon, H. W. Lee, W. J. Chung, and W. I. Lee, "Preparation of transparent particulate MoO3/TiO2 and WO3/TiO2 films and their photocatalytic properties," Chemistry of materials, vol. 13, no. 7, pp. 2349-2355, 2001.
[13]      J. H. Pan and W. I. Lee, "Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties," Chemistry of Materials, vol. 18, no. 3, pp. 847-853, 2006.
[14]      M. Bayati, F. Golestani-Fard, A. Moshfegh, and R. Molaei, "A photocatalytic approach in micro arc oxidation of WO3–TiO2 nano porous semiconductors under pulse current," Materials Chemistry and Physics, vol. 128, no. 3, pp. 427-432, 2011.
[15]      W.-K. Wang et al., "Single-molecule and-particle probing crystal edge/corner as highly efficient photocatalytic sites on a single TiO2 particle," Proceedings of the National Academy of Sciences, vol. 116, no. 38, pp. 18827-18833, 2019.
[16]      M. Farhadian, P. Sangpour, and G. Hosseinzadeh, "Morphology dependent photocatalytic activity of WO3 nanostructures," Journal of Energy Chemistry, vol. 24, no. 2, pp. 171-177, 2015.
[17]      X. Li, J. Yu, and M. Jaroniec, "Hierarchical photocatalysts," Chemical Society Reviews, vol. 45, no. 9, pp. 2603-2636, 2016.
[18]      K. Venkateswarlu et al., "Role of electrolyte chemistry on electronic and in vitro electrochemical properties of micro-arc oxidized titania films on Cp Ti," Electrochimica Acta, vol. 105, pp. 468-480, 2013.
[19]      S. Petrović, S. Stojadinović, L. Rožić, N. Radić, B. Grbić, and R. Vasilić, "Process modelling and analysis of plasma electrolytic oxidation of titanium for TiO2/WO3 thin film photocatalysts by response surface methodology," Surface and Coatings Technology, vol. 269, pp. 250-257, 2015.
[20]      M. Bayati, F. Golestani-Fard, and A. Moshfegh, "Visible photodecomposition of methylene blue over micro arc oxidized WO3–loaded TiO2 nano-porous layers," Applied Catalysis A: General, vol. 382, no. 2, pp. 322-331, 2010.
[21]      D.-S. Tsai and C.-C. Chou, "Influences of growth species and inclusions on the current–voltage behavior of plasma electrolytic oxidation: A review," Coatings, vol. 11, no. 3, p. 270, 2021.
[22]      T. Monetta, P. Parnian, and A. Acquesta, "Recent advances in the control of the degradation rate of PEO treated magnesium and its alloys for biomedical applications," Metals, vol. 10, no. 7, p. 907, 2020.
[23]      A. Santos-Coquillat, M. Mohedano, E. Martinez-Campos, R. Arrabal, A. Pardo, and E. Matykina, "Bioactive multi-elemental PEO-coatings on titanium for dental implant applications," Materials Science and Engineering: C, vol. 97, pp. 738-752, 2019.
[24]      X. Yao, X. Zhang, H. Wu, L. Tian, Y. Ma, and B. Tang, "Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation," Applied Surface Science, vol. 292, pp. 944-947, 2014.
[25]      S.-M. Park, Y.-C. Nah, and C. Nam, "Effects of hydrothermal treatment duration on morphology of WO3 nanostructures," Journal of Nanoscience and Nanotechnology, vol. 17, no. 10, pp. 7719-7722, 2017.
[26]      S. Rajagopal, D. Nataraj, D. Mangalaraj, Y. Djaoued, J. Robichaud, and O. Y. Khyzhun, "Controlled growth of WO3 nanostructures with three different morphologies and their structural, optical, and photodecomposition studies," Nanoscale research letters, vol. 4, no. 11, pp. 1335-1342, 2009.
[27]      S. Cao and H. Chen, "Hydrothermal synthesis of WO3 nanorod s: structure, growth and gas sensing properties," Optoelectronics and Advanced Materials-Rapid Communications, vol. 12, pp. 749-753, 2018.
[28]      D. Nagy, D. Nagy, I. M. Szilágyi, and X. Fan, "Effect of the morphology and phases of WO3 nanocrystals on their photocatalytic efficiency," RSC advances, vol. 6, no. 40, pp. 33743-33754, 2016.
[29]      C. S. Nkutha, N. D. Shooto, and E. B. Naidoo, "Adsorption studies of methylene blue and lead ions from aqueous solution by using mesoporous coral limestones," South African Journal of Chemical Engineering, vol. 34, pp. 151-157, 2020.
[30]      Y. Zhang, E. K. Stefanakos, and D. Y. Goswami, "Effect of photocatalytic surface roughness on reactors effectiveness for indoor air cleaning," Building and environment, vol. 61, pp. 188-196, 2013.
[31]      F. Amano, A. Yamakata, K. Nogami, M. Osawa, and B. Ohtani, "Effect of photoexcited electron dynamics on photocatalytic efficiency of bismuth tungstate," The Journal of Physical Chemistry C, vol. 115, no. 33, pp. 16598-16605, 2011.
[32]      S. Ikeda et al., "Quantitative analysis of defective sites in titanium (IV) oxide photocatalyst powders," Physical Chemistry Chemical Physics, vol. 5, no. 4, pp. 778-783, 2003.
[33]      Q. Wu, M. Liu, Z. Wu, Y. Li, and L. Piao, "Is photooxidation activity of {001} facets truly lower than that of {101} facets for anatase TiO2 crystals?," The Journal of Physical Chemistry C, vol. 116, no. 51, pp. 26800-26804, 2012.
[34]      C.-C. Wang, Z. Zhang, and J. Y. Ying, "Photocatalytic decomposition of halogenated organics over nanocrystalline titania," Nanostructured Materials, vol. 9, no. 1-8, pp. 583-586, 1997.
[35]      Z. Zhang, C.-C. Wang, R. Zakaria, and J. Y. Ying, "Role of particle size in nanocrystalline TiO2-based photocatalysts," The Journal of Physical Chemistry B, vol. 102, no. 52, pp. 10871-10878, 1998.
[36]      C. B. Almquist and P. Biswas, "Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity," Journal of Catalysis, vol. 212, no. 2, pp. 145-156, 2002.