تأثیر غلظت روی در حمام نیتراتی بر بافت کریستالی و مورفولوژی سطح پوشش اکسید روی ایجاد شده به روش رسوب الکتریکی بر زیرلایه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی اصفهان

2 دانشکده مهندسی مواد دانشگاه صنعتی اصفهان

3 دانشگاه صنعتی اصفهان، دانشکده مهندسی مواد

چکیده

در این پژوهش، پوشش اکسید روی به روش رسوب‌دهی الکتریکی از یک محلول حاوی نمک نیترات روی در غلظت‌های 0/1، 0/2، 0/3و 0/4 مولار بر زیرلایه آلیاژ تیتانیم اعمال شد. تطابق تغییرات جریان بر حسب زمان در پتانسیل‌های ثابت رسوب دهی با مدل جوانه‌زنی شریفکر-هیلز حاکی از پیشرونده بودن مود جوانه‌زنی اکسید روی در همه غلظت‌ها بود. نتایج حاصل از نمودارهای جریان- زمان نشان داد که با افزایش غلظت روی در حمام، جریان پوشش‌دهی کاهش می‌یابد و این امر منجر به ایجاد پوشش‌هایی با ضخامت کمتر از حمام‌های با غلظت‌های بالاتر از یون‌های روی می شود. تصاویر میکروسکوپی الکترونی نشان داد که با افزایش غلظت روی در حمام پوشش‌دهی، مورفولوژی پوشش از ‌کرمی‌شکل به سمت صفحه‌ای تغییر می‌یابد. آنالیز پراش پرتو ایکس نشان داد که پوشش‌های تشکیل شده دارای بافت مرجح از صفحات چند وجهی (100) در غلظت‌های1 /0 و 0/2 که به صفحات قاعده (002) در غلظت‌های 0/3 و 0/4 مولار تبدیل می شود. در حمام‌های حاوی غلظت‌های3 /0 و4 /0 مولار، علاوه بر اکسید روی، ترکیب نیترات روی نیز در پوشش بوجود آمد‌.

کلیدواژه‌ها


1. J. Zhou, N. Xu, Z.L. Wang, Dissolving behavior and stability of ZnO wires in biofluids: A study on biodegradability and biocompatibility of ZnO nanostructures, Advanced Materials. 18 (2006) 2432–2435.
2. Z. Li, R. Yang, M. Yu, F. Bai, C. Li, Z.L. Wang, Cellular Level Biocompatibility and Biosafety of ZnO Nanowires, The Journal of Physical Chemistry C. 112 (2008) 20114–20117.
3. J.K. Park, Y.J. Kim, J. Yeom, J.H. Jeon, G.C. Yi, J.H. Je, S.K. Hahn, The topographic effect of zinc oxide nanoflowers on osteoblast growth and osseointegration, Advanced Materials. 22 (2010) 4857–4861.
4. A.S. Ismail, M.H. Mamat, M.F. Malek, M.A.R. Abdullah, M.D. Sin, M. Rusop, A study on different morphological structures of zinc oxide nanostructures for humidity sensing application, in: International Conference on Nano-Electronic Technology Devices and Materials, 2016: pp. 1–5.
5. N. Talebian, S.M. Amininezhad, M. Doudi, Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties, Journal of Photochemistry and Photobiology B: Biology. 120 (2013) 66–73.
6. D.G. Tong, P. Wu, P.K. Su, D.Q. Wang, H.Y. Tian, Preparation of zinc oxide nanospheres by solution plasma process and their optical property, photocatalytic and antibacterial activities, Materials Letters. 70 (2012) 94–97.
7. N. Jayaprakash, R. Suresh, S. Rajalakshmi, S. Raja, E. Sundaravadivel, M. Gayathri, M. Sridharan, One-step synthesis, characterisation, photocatalytic and bio-medical applications of ZnO nanoplates, Materials Technology. 35 (2020) 112–124.
8. L. Znaidi, Sol-gel-deposited ZnO thin films: A review, Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 174 (2010) 18–30.
9. F.T.J. Smith, Metalorganic chemical vapor deposition of oriented ZnO film over large areas, Applied Physics Letters. 43 (1983) 1108–1110.
10. N. Ekthammathat, T. Thongtem, A. Phuruangrat, S. Thongtem, Characterization of ZnO flowers of hexagonal prisms with planar and hexagonal pyramid tips grown on Zn substrates by a hydrothermal process, Superlattices and Microstructures. 53 (2013) 195–203.
11. T. Yoshida, D. Komatsu, N. Shimokawa, H. Minoura, Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths, Thin Solid Films. 451–452 (2004) 166–169.
12. M. Skompska, K. Zarȩbska, Electrodeposition of ZnO nanorod arrays on transparent conducting substrates-a review, Electrochimica Acta. 127 (2014) 467–488.
13. M.M. Alves, C.F. Santos, M.J. Carmezim, M.F. Montemor, Nanostructured “Anastacia” flowers for Zn coating by electrodepositing ZnO at room temperature, Applied Surface Science. 332 (2015) 152–158.
14. D. Gal, G. Hodes, D. Lincot, H. Schock, Electrochemical deposition of zinc oxide films from non-aqueous solution:a new buffer/window process for thin film solar cells, Thin Solid Films. 362 (2000) 79–83.
15. B.N. Illy, A.C. Cruickshank, S. Schumann, R. Da Campo, T.S. Jones, S. Heutz, M.A. McLachlan, D.W. McComb, D.J. Riley, M.P. Ryan, Electrodeposition of ZnO layers for photovoltaic applications: controlling film thickness and orientation, Journal of Materials Chemistry. 21 (2011) 12949–12957.
16. S. Kang, J.S. Yang, D.N. Lee, Relationship between texture and surface morphology of copper electrodeposits, Plating and Surface Finishing. 82 (1995) 67–70.
17. K. Raeissi, A. Saatchi, M.A. Golozar, Effect of nucleation mode on the morphology and texture of electrodeposited zinc, Journal of Applied Electrochemistry. 33 (2003) 635–642.
18. S. Khorsand, K. Raeissi, M.A. Golozar, Effect of Oxalate Anions on Zinc Electrodeposition from an Acidic Sulphate Bath, Journal of The Electrochemical Society. 158 (2011) 377–383.
19.C. Agashe, M.G.Takwale, B.R.Marathe, V.G.Bhide, Structural Properties Of SnO2: F Films Deposited By Spray Pyrolysis, Solar Energy Materials. 17 (1988) 99–117.
20. Z. Liu, Z. Jin, J. Qiu, X. Liu, Preparation and characteristics of ordered porous ZnO films by a electrodeposition method using PS array templates, Semiconductor Science and Technology. 21 (2006) 60–66.
21. G.H. B Scharifker, Theoretical and experimental studies of multiple nucleation, Electrochimica Acta. 29 (1983) 879–889.
22. J. Mostany, J. Mozota, B.R. Scharifker, Three-dimensional nucleation with diffusion controlled growth: Part II. The nucleation of lead on vitreous carbon, Journal of Electronal Chemistry. 177 (1984) 25–37.
23. Y.D. Gamburg, G. Zangari, Theory and Practice of Metal Electrodeposition, springer, London, 2011.
24. D.T. Oloruntoba, L. Oluwole, Effect of Some Process Variables on Nickel Electroplating of Low Carbon Steel Effect of Some Process Variables on Nickel Electroplating of Low Carbon Steel, Leonardo Electronic Journal of Practices and Technologies. 18 (2011) 79–94.
25. Y. Wang, X. Zhou, Z. Liang, H. Jin, Characterization of ultrasonic-assisted electrochemical deposition of Ni-Co-ZrO2, Coatings. 8 (2018) 211–223.
26. P.C.T. D’Ajello, M.L. Munford, A.A. Pasa, Transient equations for multiple nucleation on solid electrodes: A stochastic description, The Journal of Chemical Physics. 111 (1999) 4267–4272.
27. M. Palomar-Pardavé, B.R. Scharifker, E.M. Arce, M. Romero-Romo, Nucleation and diffusion-controlled growth of electroactive centers: Reduction of protons during cobalt electrodeposition, Electrochimica Acta. 50 (2005) 4736–4745.
28. S. Tantciura, Hydrate nucleation kinetics and statistical analysis ofexperimental data, University of Stavanger, 2014.
29. S. Otani, J. Katayama, H. Umemoto, M. Matsuoka, Effect of Bath Temperature on the Electrodeposition Mechanism of Zinc Oxide Film from Zinc Nitrate Solution, Journal of The Electrochemical Society. 153 (2006) 551–556.