تاثیر لرزش الکترومغناطیس بر تغییرات ریزساختاری و رفتار فرسایش فلز جوش فولاد 100- HSLA

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مواد، دانشکده مهندسی، دانشگاه شهید چمران اهواز، اهواز

چکیده

در این تحقیق تاثیر لرزش الکترو مغناطیس بر تغییرات ریزساختاری و رفتار فرسایشی فلزجوش فولاد کم آلیاژ استحکام بالا 100-HSLA  مورد بررسی قرار گرفت. جوشکاری نمونه‌ها با روش قوس تنگستن- گاز و تحت لرزش الکترومغناطیس با ولتاژهای صفر تا30 ولت انجام گردید. ریزساختار ناحیه جوش توسط میکروسکوپ‌های نوری و الکترونی روبشی SEM مطالعه شد. آزمون فرسایش با سیالی از مخلوط آب با 5% وزنی ماسه ، در زمان‌های 5/0 تا 2 ساعت در دو زاویه برخورد 30 و 90 درجه و با سرعت ثابت برخورد سیال ساینده 10 انجام گردید. نتایج نشان داد که اعمال لرزش الکترومغناطیس باعث تغییرات ریزساختاری مثبتی گردیده و ریزساختار از فریت شبه چند وجهی همراه با شبکه پیوسته و درشت جزایر مارتنزیت/ آستنیت(MA) به فریت سوزنی همراه با جزایر  MAریزتر با پراکندگی یکنواخت‌تری تغییر یافته است. مشخص گردید که اعمال لرزش باعث بهبود رفتار فرسایش در هر دو زاویه برخورد 30 و 90 درجه گشته و بهترین رفتار فرسایش(نرخ فرسایش کمتر و کاهش وزن کمتر) در لرزش 30 ولت مشاهده شد. مکانیزم غالب فرسایش در زاویه برخورد 30 درجه شخم‌زنی و در زاویه برخورد 90 درجه، تغییر شکل پلاستیک و جدا شدن ذرات فلزی تشخیص داده شد.

کلیدواژه‌ها


1. Y. Tiana, H. Wanga, Y. Lia, Z. Wanga, G. Wanga, The Analysis of the Microstructure and Mechanical Properties of Low Carbon Microalloyed Steels after Ultra Fast Cooling, Materials Research, 20 (2017): 853-859.
2. E. J. Czyryca, M. G. Vassilaros, Advances in low carbon, high strength ferrous alloys, No. CDNSWC/SME-92/64. Naval surface warfare center carderock div bethesda md ship materials engineering dept, (1993).
3. S. Panwar, D. B. Goel, O. P. Pandey, K. S. Prasad, Aging of a copper bearing HSLA-100 steel, Bulletin of Materials Science, 26 (2003) 441–447.
4. Czyryca, R. E. Link, R. J. Wong, D. A. Aylor, T. W. Montem, J. P. Gudas. Development and Certification of HSLA‐100 Steel for Naval Ship Construction, Naval engineers journal 102 (1990): 63-82.
5. X. L. Wang, Y. T. Tsai, J. R. Yang. Z. Q. Wang, X. C. Li, C. J. Shang, R. D. K. Misra, Effect of interpass temperature on the microstructure and mechanical properties of multi-pass weld metal in a 550-MPa-grade offshore engineering steel, Welding in the World 61(2017) 1155-1168.
6. J.M. Ahmadi, Study of galvanic corrosion in fusion welded HSLA-100 steel weldment, Sahand University of Technology(2014).
7. Okonkwo, Paul C., R. A. Shakoor, M. M. Zagho, A. Mo. A. Mohamed. Erosion behaviour of API X100 pipeline steel at various impact angles and particle speeds, Metals 6 (2016) 232.
8. Islam, Md Aminul, T. Alam, Z. N. Farhat, A. Mohamed, A. Alfantazi. Effect of microstructure on the erosion behavior of carbon steel, Wear 332 (2015) 1080-1089.
9. G.T. Burstein, K. Sasaki, Effect of impact angle on the slurry erosion–corrosion of 304L stainless steel, Wear 240 (2000) 80–94.
10. Nguyen, V. B. Nguyen, C. Y. H. Lim, Q. T. Trinh, S. Sankaranarayanan, Y. W. Zhang, M. Gupta. Effect of impact angle and testing time on erosion of stainless steel at higher velocities, Wear 321 (2014) 87-93.
11. R. Vera, B.M. Rosales, C. Tapia, Effect of the exposure angle in the corrosion rate of plain carbon steel in a marine atmosphere, Corrossion Science. 45 (2003) 321–337.
12. I. Finnie, G.R. Stevick, J.R. Ridgely, The influence of impingement angle on the erosion of ductile metals by angular abrasive particles, Wear, 152 (1992) 91–98.
13. Okonkwo, Paul C., R. A. Shakoor, E. Ahmed, A. M. A. Mohamed. Erosive wear performance of API X42 pipeline steel. Engineering Failure Analysis 60 (2016): 86-95. 14. Kou, Sindo, Welding metallurgy, New Jersey, USA (2003): 431-446.
 15. s. s. ghasemi, transformation characteristics and structure-property relationship for a copper bearing HSLA steel, university of Wollongong, (1996).
16. R. Dehmolaei, M. Shamaniana, A. Kermanpur, Effect of electromagnetic vibration on the unmixed zone formation in 25Cr–35Ni heat resistant steel/Alloy 800 dissimilar welds, materials charactrization, 59(2008)1814–1817.
17. Cui, Yan, C. L. Xu, Q. Han. Effect of ultrasonic vibration on unmixed zone formation, Scripta Materialia 55 (2006): 975-978.
18. L. Qinghua, C. Ligong, N. Chunzhen, Improving welded valve quality by vibratory weld conditioning, Materials Science and Engineering A, 457 (2007) 246–253.
19. W. Weite. Influence of vibration frequency on solidification of weldments, Scripta Materialia, 42 (2000) 661–665.
20. S. K. Dhua, D. Mukerjee, D.S. Sarma, Effect of Cooling Rate on the As-Quenched Microstructure and Mechanical Properties of HSLA-100 Steel Plates, metallurgical and materials transactions A, 34 (2003) 2493-2504.
21. K. Shibata, K. Asakura,Transformation Behavior and Microstructures in Ultra-low Carbon Steels, ISIJ International, 35(1995) 982-991.
22.Y. Fan, Q. Wang, H. Liu, T. Wang, Q. Wang, F. Zhang, Effect of Controlled Cooling on Microstructure and Tensile Properties ofLow C Nb-Ti-Containing HSLA Steel for Construction, Metals 7 (2017) 23.
23. W. Zhao, Y. Zou, K. Matsuda, Z. Zou, Corrosion behavior of reheated CGHAZ of X80 pipeline steel inH2S-containing environments, Materials and Design 99 (2016) 44–56.
24. F. Xiao, B. Liao, D. Ren, Y. Shan, K. Yang, Acicular ferritic microstructure of a low-carbon Mn–Mo–Nb microalloyed pipeline steel, Materials Characterization, 54 (2005) 305– 314.
25. L. Fan, T. Wang, Z. Fu, Sh. Zhang, Q. Wang, Effect of heat-treatmenton-line process temperature on the microstructure and tensile properties of a low carbon Nb-microalloyed steel, MaterialsScience and Engineering A, 607 (2014)559–568.
26. Y. Oka, M. Matsumura, T. Kawabata, Relationship between surface hardness and erosion damage caused by solid particle impact,Wear 162(1993)688–695.
27. J. Sucháneka, V. Kuklíka, E. Zdraveckáb, Influence of microstructure on erosion resistance of steels, Wear 267 (2009) 2092–2099.
28. I. I. Tsypin, Wear resistant white cast irons Structure and properties, Metallurgiya, (1983)176.
28. Islam, M. Aminul, Z. N. Farhat, Effect of impact angle and velocity on erosion of API X42 pipeline steel under high abrasive feed rate, Wear 311 (2014) 180-190.
29. I. M. Hutchings, Deformation of metal surfaces by the oblique impact of square plates, International Journal of Mechanical Sciences 19 (1977) 45-52.
30. I. M. Hutchings, Mechanism of  the erosion of metals by solid  particles, Erosion : Preventionand Useful Applications, ASTMSTP,664, ASTM, )1979(59–76.
31. Clark, H. McI, A Comparison of the Erosion Rate of Casing Steels by Sand–Oil Suspensions, Wear, 150(1991) 217–230.
32. Tan, K. S. Wood, R. J. K. Stokes, The Slurry Erosion Behaviour of High Velocity Oxy-Fuel (HVOF) Sprayed Aluminium Bronze Coatings, Wear, 255(2003) 195–205.
33. R. J. K. Wood, J. C. Walker, T. J. Harvey, S. Wang, S. S. Rajahram, Influence of microstructure on the erosion and erosion–corrosion characteristics of 316 stainless steel, Wear 306(2013)254–262.
34. I. M. Hutchings, R. E. Winter, J. E. Field, Solid particle erosion of metals :the  removal of surface material by spherical projectiles, Proc. R. Soc. London, A 348(1976)379–392.
35. Arora, H. S, Grewal, H. S, Singh, H, Mukherjee, Zirconium Based Bulk Metallic Glass—Better Resistance to Slurry Erosion Compared to Hydroturbine Steel, Wear, 307(2013) 28–34.
36. Nguyen, C. Y. H. Lim, V. B. Nguyen, Y. M. Wan, B. Nai, Y. W. Zhang, M. Gupta, Slurry erosion characteristics and erosion mechanisms of stainless steel, Tribology International 79 (2014) 1-7.