بررسی نقش نانوالیاف اتیل سلولز در جدایش کاتدی پوشش پلی یورتان خطوط لوله فولادی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان

2 پژوهشکده نانو تکنولوژی و مواد پیشرفته، دانشگاه صنعتی اصفهان

چکیده

پوشش­های پلی­ یورتان بطور معمول بمنظور حفاظت از خطوط لوله انتقال نفت و گاز در برابر خوردگی استفاده می­ شود. بمنظور افزایش راندمان حفاظت و همچنین جلوگیری از مشکلات خوردگی، خطوط لوله مزبور تحت حفاظت کاتدی قرار می­ گیرند. مشکل عمده پوشش­های پلیمری تحت حفاظت کاتدی، کاهش چسبندگی پوشش در فصل مشترک با سطح فلز و در نتیجه جدایش کاتدی پوشش است که به علت تشکیل محصولات خوردگی و همچنین تجمع هیدروژن در فصل مشترک ایجاد می­شود. در تحقیق حاضر بمنظور بهبود مقاومت به جدایش کاتدی پوشش پلی­یورتان از یک لایه پوشش نانوالیاف اتیل ­سلولز بر روی زیرلایه فولادی از جنس فولاد API X52 پیش از اعمال پوشش پلی­ یورتان بر روی سطح فلز، بهره گرفته شد. بمنظور مقایسه میزان جدایش کاتدی، پوشش نانوکامپوزیتی پلی ­یورتان/ نانوالیاف اتیل­ سلولز و پوشش پلی­ یورتان از روش استاندارد ASTM G8-96 در فواصل زمانی مختلف استفاده شد و سطح جدایش یافته پوشش­ها محاسبه گردید. همچنین در زمان‌های مزبور، آزمون طیف­سنجی امپدانس الکتروشیمیایی بر روی نمونه­ ها انجام گرفت. نتایج بدست آمده حاکی از بهبود عملکرد پوشش نانوکامپوزیتی بر پایه پلی­ یورتان/ نانوالیاف اتیل­ سلولز در برابر جدایش کاتدی نسبت به پوشش پلی ­یورتان بود.

کلیدواژه‌ها


1. A. Samimi and S. Zarinabadi, Application polyurethane as coating in oil and gas pipelines, International Journal of science and investigations, France, 1 (2012) 43-45.
2. F. Lu, B. Song, P. He, Z. Wang, and J. Wang, Electrochemical impedance spectroscopy (EIS) study on the degradation of acrylic polyurethane coatings, RSC Advances, 7 (2017) 13742-13748.
3. J. Li, R. Hong, M. Li, H. Li, Y. Zheng, and J. Ding, Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings, Progress in Organic Coatings, 64 (2009) 504-509.
4. A. Tanvir, Y. H. El-Gawady, and M. Al-Maadeed, Cellulose nanofibers to assist the release of healing agents in epoxy coatings, Progress in Organic Coatings, 112) 2017) 127-132.
5. N. Grishkewich, N. Mohammed, J. Tang, and K. C. Tam, Recent Advances in the Application of Cellulose Nanocrystals, Current Opinion in Colloid & Interface Science, 29 (2017) 32-45
6. J. A. Heredia‐Guerrero, J. J. Benítez, P. Cataldi, U. C. Paul, M. Contardi, R. Cingolani, et al., All‐Natural Sustainable Packaging Materials Inspired by Plant Cuticles, Advanced Sustainable Systems, 1 (2017).
7. M. Davidovich-Pinhas, S. Barbut, and A. Marangoni, Physical structure and thermal behavior of ethylcellulose, Cellulose, 21 (2014) 3243-3255.
8. X. Y. Li, D. G. Yu, C. T. Fu, R. Wang, and X. Wang, Ketoprofen/ethyl Cellulose Nanofibers Fabricated Using an Epoxy-coated Spinneret, Modeling and Numerical Simulation of Material Science,3 (2013) 6-10.
9. J. Y. Park, J. I. Kim, and I. H. Lee, Fabrication and Characterization of Antimicrobial Ethyl Cellulose Nanofibers Using Electrospinning Techniques, Journal of nanoscience and nanotechnology, 15 (2015) 5672-5675.
10. B. M. Min, S. W. Lee, J. N. Lim, Y. You, T. S. Lee, P. H. Kang, et al., Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers, Polymer, 45 (2004) 7137-7142.
11. Z. M. Huang, Y. Zhang, S. Ramakrishna, and C. Lim, Electrospinning and mechanical characterization of gelatin nanofibers, Polymer,45 (2004) 5361-5368.
12. M. Z. Elsabee, H. F. Naguib, and R. E. Morsi, "Chitosan based nanofibers, review," Materials Science and Engineering: C, 32 (2012) 1711-1726.
 
13. A. Thorvaldsson, P. Edvinsson, A. Glantz, K. Rodriguez, P. Walkenström, and P. Gatenholm, Superhydrophobic behaviour of plasma modified electrospun cellulose nanofiber-coated microfibers, Cellulose, 19 (2012) 1743-1748.
14. F. Mahdavi, M. Forsyth, and M. Y. Tan, Techniques for testing and monitoring the cathodic disbondment of organic coatings: An overview of major obstacles and innovations, Progress in Organic Coatings, 105 (2017) 163-175.
15. X. Luo and P. T. Mather, Shape memory assisted self-healing coating, ACS Macro Letters, 2 (2013) 152-156.
16. B. Ramezanzadeh, A. Ahmadi, and M. Mahdavian, Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets, Corrosion Science, 109 (2016) 182-205.
17. H. Bi and J. Sykes, Cathodic disbonding of an unpigmented epoxy coating on mild steel under semi-and full-immersion conditions, Corrosion Science,53 (2011) 3416-3425.
18. B. Ramezanzadeh, A. Ahmadi, M. Mahdavian, Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets, Corrosion Science, 109, (2016) 182-205.
19. F. Mahdavi, M. Y. Tan, and M. Forsyth, Electrochemical impedance spectroscopy as a tool to measure cathodic disbondment on coated steel surfaces: Capabilities and limitations, Progress in Organic Coatings,88 (2015) 23-31.