پوشش هیدروکسی‌آپاتیت – آلومینا کامپوزیتی بر روی آلیاژ NiTi با استفاده از روش پوشش دهی الکتروفورتیک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه بناب، بناب

2 مرکز تحقیقات مواد پیشرفته و فرآوری مواد معدنی، دانشکده مهندسی مواد، دانشگاه صنعتی سهند، تبریز

3 دانشکده مهندسی مکانیک،دانشگاه صنعتی خواجه نصیرالدین طوسی

4 تهران بخش مهندسی مواد، دانشکده مهندسی،دانشگاه شیراز، شیراز

چکیده

در این پژوهش ترکیب پودر هیدروکسی­ آپاتیت و آلومینا با نسبت وزنی 50 -50 به روش الکترو­فورتیک بر روی آلیاژ حافظه­ دار NiTi پوشش‌داده شد. محلول سوسپانسیون مورد استفاده n–بوتانول و تری اتانول آمین بود. عملیات رسوب‌گذاری در 60 ولت به مدت 120 ثانیه بر روی کاتد انجام گرفت. پس از رسوب‌گذاری، جهت خشک شدن پوشش، نمونه‌ها در دمای اتاق به مدت 24 ساعت قرار گرفتند. سپس عملیات تف­جوشی نمونه ­ها به مدت 2 ساعت در کوره تحت اتمسفر آرگون در دمای oC850 انجام شد. رفتار زیست‌فعالی، خوردگی و آزادسازی یون نیکل در محلول شبیه‌سازی بدن مورد بررسی قرار گرفت. نتایج نشان م ی­دهند پوشش کامپوزیتی هیدروکسی‌آپاتیت - آلومینا به عنوان مانع خوبی در برابر نفوذ یون‌های نیکل در محیط بدن عمل کرده و رفتار خوردگی نمونه‌های حاوی پوشش کامپوزیتی بهبود یافته است. همچنین استحکام چسبندگی پوشش کامپوزیتی هیدروکسی‌آپاتیت – آلومینا  MPa8/1±4/22 بدست آمد.

کلیدواژه‌ها


1. M. H. Elahinia, M. Hashemi, M. Tabesh, S. B. Bhaduri, Manufacturing and processing of NiTi implants: A review, Progress in Materials Science, 57 (2012) 911-946.

2. S. Kucharski, N. Levintant-Zayonts, J. Luckner, Mechanical response of nitrogen ion implanted NiTi shape memory alloy, Materials & Design,  56 (2014) 671-679.

3. A. Runciman, D. Xu, A. R. Pelton, R.O. Ritchie, An equivalent strain/Coffin–Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices, Biomaterials, 32 (2011) 4987- 4993.

4. M. Geetha, A. K. Singh, R. Asokamani, A. K.Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants: A review, Progress in Materials Science, 54 (2009) 397-425.

5. J. Khalil-Allafi, B. Amin-Ahmadi, M. Zare, Biocompatibility and corrosion behavior of the shape memory NiTi alloy in the physiological environments simulated with body fluids for medical applications, Materials Science and Engineering: C, 30(2010) 1112-1117.

6. E. Czarnobilska, K. Obtułowicz, K. Wsołek, J. Piętowska, R. Śpiewak, U. J. Krakowie, Z.A.K. Środowiskowej, Mechanizmy alergii na nikiel. Przegl Lek, 64 (2007) 502-505.

7. J. L. Xu, F. Liu, F. P. Wang, D. Z. Yu, L. C. Zhao, Formation of Al2O3 coatings on NiTi alloy by micro-arc oxidation method, Current Applied Physics, 9 (2009) 663-666.

8. D. Roman, J. C. Bernardi, C. D. Boeira, F. S. Souza, A. Spinelli, C. A. Figueroa, R. L. Basso, Nanomechanical and electrochemical properties of ZrN coated NiTi shape memory alloy, Surface and Coatings Technology, 206 (2012) 4645-4650.

9. H. Maleki-Ghaleh, V. Khalili, J. Khalil-Allafi, M. Javidi, Hydroxyapatite coating on NiTi shape memory alloy by electrophoretic deposition process, Surface and Coatings Technology, 208 (2012) 57-63.

10. H. Maleki‐Ghaleh, J. Khalil‐Allafi, V. Khalili, M. S. Shakeri, M. Javidi, Effect of hydroxyapatite coating fabricated by electrophoretic deposition method on corrosion behavior and nickel release of NiTi shape memory alloy, Materials and Corrosion, 64 (2013) 1-8.

11. K. W. K. Yeung, R. Y. L. Chan, K. O. Lam, S. L. Wu, X. M. Liu, C. Y. Chung, K. M. C. Cheung, In vitro and in vivo characterization of novel plasma treated nickel titanium shape memory alloy for orthopedic implantation, Surface and Coatings Technology, 202 (2007) 1247-1251.

12. E. Mohseni, E. Zalnezhad, A. R. Bushroa, Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: A review, International Journal of Adhesion and Adhesives, 48 (2014) 238-257.

13. C. H. U. N. Chen, S. Ding, Effect of heat treatment on characteristics of plasma sprayed hydroxyapatite coatings, Materials transactions, 47 (2006) 935-940.

14. P. Ducheyne, W. Van-Raemdonck, J. C. Heughebaert, M. Heughebaert, Structural analysis of hydroxyapatite coatings on titanium, Biomaterials, 7 (1986) 97-103.

15. A. R. Boccaccini, S. Keim, R. Ma, Y. Li, I. Zhitomirsky, Electrophoretic deposition of biomaterials, Journal of the Royal Society Interface, 7 (2010) 581-613.

16. M. Javidi, S. Javadpour, M. E. Bahrololoom, J. Ma, Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel, Materials Science and Engineering: C, 28 (2008) 1509-1515.

17. A. R. Boccaccini, C. Peters, J. A. Roether, D. Eifler, S. K. Misra, E. J. Minay, Electrophoretic deposition of polyetheretherketone (PEEK) and PEEK/Bioglass coatings on NiTi shape memory alloy wires, Journal of materials science, 41 (2006) 8152-8159.

18. J. Breme, Y. Zhou, L. Groh, Development of a titanium alloy suitable for an optimized coating with hydroxyapatite, Biomaterials, 16 (1995) 239-244.

19. C. Nils, S. Wu, D. Holz, Reaction bonding of aluminum oxide (RBAO) composites: processing, reaction mechanisms and properties, Journal of the European Ceramic Society, 14 (1994) 97-109.

20. H. Maleki-Ghaleh, J. Khalil-Allafi, V. Khalil, M. Javidi, Electrophoretic deposition of Hydroxyapatite on NiTi shape memory alloy, Iranian journal of surface science and engineering, 13 (2012) 25–32.

21. O. Ayako, H. M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, T. Nakamura, Preparation and assessment of revised simulated body fluids, Journal of Biomedical Materials Research Part A,65 (2003) 188-195.

22. L. Panjian, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, K. de Groot, The role of hydrated silica, titania, and alumina in inducing apatite on implants, Journal of Biomedical Materials Research, 28 (1994) 7-15.

23. L. Maria, K. Cholewa‐Kowalska, A. Laczka‐Osyczka, M. Tworzydlo, B. Turyna, Gelderived materials of a CaOP2O5SiO2 system modified by boron, sodium, magnesium, aluminum and fluorine compounds,Journal of biomedical materials research, 52 (2000) 601-612.

24. P. Sepulveda, J. R. Jones, L. L. Hench, In vitro dissolution of meltderived 45S5 and solgel derived 58S bioactive glasses, Journal of Biomedical materials research, 61 (2002) 301-311.

25. P. Li, Q. Yang, F. Zhang, T. Kokubo, The effect of residual glassy phase in a bioactive glass-ceramic on the formation of its surface apatite layerin vitro, Journal of Materials Science: Materials in Medicine, 3 (1992) 452-456.

26. M. Metikos-Huković, A. Kwokal, J. Piljac, The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution, Biomaterials, 24 (2003) 3765-3775.

27. C. Liu, Q. Bi, A. Leyland, A. Matthews, An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II. EIS interpretation of corrosion behavior, Corrosion Science, 45 (2003) 1257–1273.

28. D. Qiu, A. Wang, Y. Yin, Preparation and Characterization of Hydroxyapatite/Titania Composite Coating on NiTi Alloy by Electrochemical Deposition, Surface and Coating Technology, 205 (2011) 3280–3284.

29. D. Qiu, A. Wang, Y. Yin, Characterization and Corrosion Behavior of HydroxyapatiteZirconia Composite Coating on NiTi Fabricated by Electrochemical Deposition, Applied Surface Science, 257 (2010) 1774-1778.