بررسی تاثیر محلول نانو ذرات در رفتار اصطکاک کولمبی در شکل دهی آلیاژ آلومینیوم به روش آزمون فشار حلقه

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه ارومیه، ارومیه

چکیده

اصطکاک یکی از مهم­ترین فاکتورهای مؤثر بر فرآیندهای شکل­دهی فلزات است. علاوه بر رعایت یک سری اصول اساسی، انجام روانکاری صحیح، بهترین روش کنترل اصطکاک و سایش در یک فرآیند است. یکی از روش­های ارزیابی تاثیر روان­کارها بر اصطکاک در فرآیندهای شکل­دهی، آزمون فشار حلقه است. با استفاده از منحنی­های کالیبراسیون در فرآیند فشار حلقه، ضریب اصطکاک محاسبه می­شود. در این مقاله تاثیر محلول نانو ذرات اکسید مس و آلومینا در روانکارهای پایه پارافین و روغن10 در تاثیر بر اصطکاک طبق مدل اصطکاک کولمب بررسی شده است. از روش تاگوچی و آرایه متعامد L8 با توجه به تعداد عوامل مورد بررسی، جهت طراحی آزمایش­ها و بدست آوردن حالت بهینه استفاده شده است. با انجام آزمایشات پیشنهادی و بکارگیری منحنی­های کالیبراسیون برای ماده Al7xxx، ضرایب اصطکاک کولمب برای روانکارهای مختلف بدست آمده است. پارامترهای درصد وزنی نانو ذرات، نوع روانکار پایه و نوع نانو ذرات افزودنی، به عنوان متغیرهای ورودی، و ضریب اصطکاک کولمب به عنوان متغیرهای هدف در نظر گرفته شدند. با روش آنالیز واریانس میزان تاثیرگذاری هر متغیر ورودی بر روی پارامتر هدف بررسی شد و مقادیر پارمترهای ورودی جهت کمینه کردن مقدار ضریب اصطکاک با روش سیگنال به نویز تاگوچی استخراج شدند. نتایج نشان می­دهد که بیشترین تاثیر را درصد وزنی نانو ذرات با سهم درصد 15/62 روی ضریب اصطکاک دارد و با افزایش درصد وزنی نانو ذرات، ضریب اصطکاک افزایش می­یابد. همچنین بهترین ترکیب برای به حداقل رساندن ضریب اصطکاک، ترکیب %8/0 نانو ذرات آلومینا در روانکار روغن10 بدست آمد.

کلیدواژه‌ها


1. K. Manisekar, R. Narayanasamy, S. Malayappan, Effect of friction on barrelling in square billets of aluminium during cold upset forging, Materials & design, 27 (2006)147-155.

2. R. Hartley, T. Cloete, G. Nurick, An experimental assessment of friction effects in the split Hopkinson pressure bar using the ring compression test, International Journal of Impact Engineering, 34(2007) 1705-1728.

3. D. Hayhurst, M. Chan, Determination of friction models for metallic die–workpiece interfaces, International journal of mechanical sciences, 47(2005)1-25.

4. W.-C. Yeh, M.-C. Wu, Effect of natural boundary condition and the neutral surface of nonlinear type on the upper-bound solution to upset forging of rings using a variational approach, Mechanics of Materials, 40(2008)427-445.

5. O.M. Ettouney, K.A. Stelson, An approximate model to calculate foldover and strains during cold upsetting of cylinders Part II: Use of the foldover model to estimate friction, Journal of engineering for industry, 112(1990)267-271.

6. O.M. Ettouney, K.A. Stelson, An Approximate Model to Calculate Foldover and Strains During Cold Upsetting of Cylinders Part I: Formulation and Evaluation of the Foldover Model, Journal of engineering for industry, 112(1990)260-266.

7. E. Rajesh, M. SivaPrakash, Analysis of friction factor by employing the ring compression test under different lubricants, International Journal of Scientific and Engineering Research, 4(2013)1163-1171.

8. P. Keshtiban, M. Zadshakouyan, G. Faraji, Friction study in Equal Channel Multi Angular Pressing: Load Curve and Ring Compression tests Transactions of the Indian Institute of Metals, 69(2016)1793-1800.

9. B. Wang, J.L. Sun, Y.Y. Wu, Lubricating performances of nano organic molybdenum as additives in water-based liquid during cold rolling, Advanced Materials Research, Trans Tech)2011)550-555.

10. R. Velu, M. Cecil, Quantifying Interfacial Friction in Cold Forming using Forward Rod Backward Cup Extrusion Test, Journal of The Institution of Engineers (India): Series C, 93(2012)157-161.

11. Z. Zhu, J. Sun, T. Niu, N. Liu, Experimental research on tribological performance of water-based rolling liquid containing nano-TiO2, Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 229(2015)104-109.

12. D.B. Zareh, Y.M. Abbaszadeh, B. Davoodi, Lubrication enhancement in deep drawing process by utilizing nanoparticle additives, Modares Mechanical Engineering, 15(2015)317-322.

13. V. Alimirzaloo, S. SheydayiGurchinQaleh, P. MashhadiKeshtiban, S. Ahmadi, Investigation of the effect of CuO and AL2O3 nanolubricants on the surface roughness in the forging process of aluminum alloy, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, (2017).

14. A.H. Battez, R. González, CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants, J. Viesca, J. Fernández, J.D. Fernández, A. Machado, R. Chou, J. Riba, Wear, 265(2008)422-428.

15. T. Luo, X. Wei, X. Huang, L. Huang, F. Yang, Tribological properties ofAl2O3 nanoparticles as lubricating oil additives, Ceramics International, 40(2014)7143-7149.

16. E.M. Mielnik, Metalworking science and engineering, McGraw-Hill, Inc.(USA),  (1991) 976.

17. E. Kuram, B. Ozcelik, Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill, Measurement, 46(2013)1849-1864.

18. H. Sofuoglu, H. Gedikli, Determination of friction coefficient by employing the ring compression test, Tribology International, 35(2002)27-34.

19. T. Altan, G. Ngaile, G. Shen, Cold and hot forging: fundamentals and applications, ASM international, (2005).

20. J. Prasanna, L. Karunamoorthy, M.V. Raman, S. Prashanth, Optimization of process parameters of small hole dry drilling in Ti–6Al–4V using Taguchi and grey relational analysis, D.R. Chordia, Measurement, 48(2014)346-354.

21. B.V. Patil, U. Chakkingal, T.P. Kumar, Effect of geometric parameters on strain, strain inhomogeneity and peak pressure in equal channel angular pressing–A study based on 3D finite element analysis, Journal of Manufacturing Processes, 17(2015)88-97.