بررسی تجربی و مدلسازی استحکام چسبندگی و پیوستگی پوشش WC-10Co-4Cr به روش HVOF پس از فرآیند سنگ‌زنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس

2 دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان

چکیده

امروزه کاربرد پوشش ‌های سرمت به روش پاشش حرارتی با سوخت اکسیژن در سرعت بالا، HVOF، در صنایع مختلف، بسیار مورد توجه است. زبری سطح پوشش‌ های کاربیدی پس از فرآیند پاشش حرارتی، بالاتر از مقادیر قابل قبول در شرایط کاربردی است، بنابراین به منظور دستیابی به زبری سطح مطلوب، سطح پوشش توسط فرآیند سنگ‌ زنی پرداخت می‌ شود. در این مقاله، تأثیر تغییرات همزمان سه پارامتر اصلی فرآیند سنگ ‌زنی شامل سرعت برش، نرخ پیشروی و عمق برش بر استحکام چسبندگی و پیوستگی پوشش WC-10Co-4Cr به روش HVOF مورد مطالعه قرار گرفت. بدین منظور، برای اولین بار از طراحی آزمایش به روش فاکتوریل کامل برای انجام فرآیند سنگ‌ زنی نمونه‌ های آزمایشگاهی و از آنالیز واریانس برای تعیین پارامترهای مؤثر فرآیند سنگ ‌زنی استفاده شد. استحکام پوشش، توسط تعیین تافنس شکست به روش ایجاد نقطه اثر با فرورونده‌ ویکرز تعیین گردید. نتایج نشان داد، استحکام چسبندگی و پیوستگی پوشش پس از فرآیند سنگ‌ زنی بهبود یافته و با افزایش عمق برش و نرخ پیشروی و کاهش سرعت برش، خواص چسبندگی و پیوستگی پوشش افزایش می‌ یابند. همچنین ترتیب میزان تأثیر پارامترهای سنگ ‌زنی بر این خواص عبارتند از: عمق برش، نرخ پیشروی و سرعت برش. در پایان رابطه بین پارامترهای سنگ‌ زنی و خواص چسبندگی و پیوستگی پوشش توسط رگرسیون مدلسازی شد.

کلیدواژه‌ها


1. T.N. Rhys-Jones, The use of thermally sprayed coatings for compressor and turbine applications in aero engines, Surface and coatings Technology, 42(1) (1990) 1-11.
2. S. Hong, Y.P. Wu, W.W. Gao, B. Wang, W.M. Guo, J.R. Lin, Microstructural characterisation and microhardness distribution of HVOF sprayed WC-10Co-4Cr coating, Surface Engineering, 30(1) (2014) 53-58.
3. M. Xie, S. Zhang, M. Li, Comparative investigation on HVOF sprayed carbide-based coatings, Applied Surface Science, 273(2013) 799-805.
4. K. Murugan, A. Ragupathy, V. Balasubramanian, K. Sridhar, Optimizing HVOF spray process parameters to attain minimum porosity and maximum hardness in WC–10Co–4Cr coatings, Surface and Coatings Technology, 247(2014) 90-102.
5. W. Luo, U. Selvadurai, W. Tillmann, Effect of Residual Stress on the Wear Resistance of Thermal Spray Coatings, Journal of Thermal Spray Technology, 25(1-2) (2016) 321-330.
6. J.K.N. Murthy, D.S. Rao, B. Venkataraman, Effect of grinding on the erosion behavior of a WC–Co–Cr coating deposited by HVOF and detonation gun spray processes. Wear, 249(7) (2001) 592-600.
7. Thermal Spraying: Practice, Theory, and Application; American Welding Society, 1985.
8. X. Liu, B. Zhang, Z. Deng, Grinding of nanostructured ceramic coatings: surface observations and material removal mechanisms. International Journal of Machine Tools and Manufacture, 42(15) (2002) 1665–1676.
9. X. Liu, B. Zhang, Grinding of nanostructural ceramic coatings: damage evaluation. International Journal of Machine Tools & Manufacture, 43(2) (2003) 161-167.
10. X. Liu, B. Zhang, Effects of grinding process on residual stresses in nanostructured ceramic coatings. Journal of materials science, 37 (15) (2002) 3229-3239.
11. A.K.Maiti,; N.Mukhopadhyay,; R. Raman, Improving the wear behavior of WC-CoCr-based HVOF coating by surface grinding. Journal of Materials Engineering and Performance, 18(8) (2009) 1060-1066.
12. H. Masoumi, S.M. Safavi, M. Salehi, Grinding force, specific energy and material removal mechanism in grinding of HVOF-sprayed WC–Co–Cr coating.Materials and Manufacturing Processes, 29 (3) (2014) 321-330.
13. H. Masoumi, S.M. Safavi, M. Salehi, S.M. Nahvi, Effect of grinding on the residual stress and adhesion strength of HVOF thermally sprayed WC–10Co–4Cr coating. Materials and Manufacturing Processes, 29(9) (2014) 1139–1151.
14. Z. Chen, K. Zhou, X. Lu, Y.C. Lam, A review on the mechanical methods for evaluating coating adhesion. Acta Mechanica, 225(2) (2014) 431–452.
15. D. Chicot, P. Démarécaux, J. Lesage, Apparent interface toughness of substrate and coating couples from indentation tests. Thin Solid Films, 283(1) (1996) 151-157.
16. M.H. Staia, E. Ramos, A. Carrasquero, A. Roman, J. Lesage, D. Chicot, G. Mesmacque, Effect of substrate roughness induced by grit blasting upon adhesion of WC-17% Co thermal sprayed coatings. Thin Solid Films, 377(2000) 657-664.
17. Z. Mohammadi, A.A. Ziaei Moayyed, A.S.M. Mesgar, Adhesive and cohesive properties by indentation method of plasma-sprayed hydroxyapatite coatings. Applied Surface Science, 253(11) (2007) 4960-4965.
18. I.L. Báez, C.A.P. Salas, J.M. Saldaña, L,G.T. Martínez, Effects of the modification of processing parameters on mechanical properties of HVOF Cr2C3-25NiCr coatings. Journal of Thermal Spray Technology, 24(6) (2015) 938-946.
19. C. Lyphout, P. Nylén, A. Manescu, T. Pirling, Residual stresses distribution through thick HVOF sprayed Inconel 718 coatings. Journal of Thermal Spray Technology, 17(5-6) (2008) 915-923.
20. C. Lyphout, P. Nylen, L.G. Östergren, Adhesion strength of HVOF sprayed IN718 coatings. Journal of Thermal Spray Technology, 21(1) (2012) 86-95.
21. L.N.Zhu,; B.S.Xu,; H.D.Wang,; C.B. Wang, Measurement of Residual Stresses Using Nanoindentation Method. Critical Reviews in Solid State and Materials Sciences, 40(2) (2015) 77-89.
22. I.D. Marinescu, M.P. Hitchiner, E. Uhlmann, W.B. Rowe, I. Inasaki, Handbook of machining with grinding wheels; CRC Press, 2006.