تأثیر پارامترهای فرایند پاشش حرارتی LPPS بر ریزساختار پوششNiCoCrAlY و مقایسه آن با فرایند HVOF

نوع مقاله : مقاله پژوهشی

نویسندگان

مجتمع دانشگاهی مواد و فناوری‌های ساخت، دانشگاه صنعتی مالک اشتر

چکیده

بهبود راندمان توربین‌ها، توسط افزایش دمای ورودی توربین صورت می­پذیرد که مستلزم افزایش مقاومت به اکسیداسیون پوشش‌های MCrAlY می­باشد. مقاومت به اکسیداسیون پوشش MCrAlY وابسته به ترکیب شیمیایی و ریزساختار پوشش است که می‌تواند از طریق بهینه­سازی پارامترهای پوشش‌دهی بهبود یابد. هدف از این پژوهش بررسی پارامترهای فرایند LPPS بر ریزساختار پوشش NiCoCrAlY و مقایسه آن با ریزساختار ایجاد شده به روش HVOF است. بدین منظور، از میکروسکوپ نوری و الکترونی (SEM) و نرم‌افزار آنالیز تصویری جهت بررسی ریزساختار پوشش و از طیف‌سنجی تفکیک انرژی (EDS) و پراش پرتو ایکس (XRD) جهت آنالیز عنصری و فازی استفاده شد. نتایج بررسی‌ها نشان دادند، ریزساختار بهینه پوشش در ماکزیمم دما و سرعت ذرات در برخورد بر سطح زیرلایه حاصل می­شود؛ بنابراین در بهینه­سازی پارامترها، با افزایش نرخ گاز اولیه پلاسما (Ar) تا SLPM 75، سرعت کم ذرات در اثر کاهش دانسیته جت پلاسما در فشار پایین محفظه جبران شد. افزایش نرخ گاز ثانویه پلاسما (H2) تا SLPM 16 با افزایش آنتالپی جت پلاسما، کاهش دمای ذرات در اثر کاهش مدت زمان ماندگاری ذرات در اثر افزایش سرعت جت پلاسما (افزایش نرخ گاز اولیه) را جبران می­نماید. همچنین جریان قوس نیز جهت فراهم نمودن انرژی لازم جهت یونیزاسیون گازهای پلاسما، تا A 650 در فاصله پاشش cm 12، افزایش یافت. نتایج آنالیز عنصری و فازی نشان داد پوشش NiCoCrAlY شامل زمینه محلول جامد نیکل γ به همراه فازهای پراکنده β-(Ni, Co)Al و مقدار بسیار جزئی فاز اکسیدی می‌باشد.

کلیدواژه‌ها


1. J. L. Simalk, ASM Handbook, Volum 20, Materials Selection and Design, 10th ed. ASM International, 589–602) 1997(.
2. J. A. Sprague, F. A. Smidt, S. D. Henry, H. Development, S. R. Lampman, N. D. Wheaton, and M. S. Woods, ASM Handbook, Volume 5, Surfce Engineering, 10th ed., ASM International, 5(1994)508–513.
3. J. R. Davis, ASM Specialty Handbook, Heat Resistant Materials. ASM International, 1999.
4. S. Bose, High Temperature Coatings. Elsevier Science & Technology Books, 2007.
5. H. E. Evans, High temperature coatings : protection and breakdown, no. x. Elsevier, (2010).
6. M. Eskner, Mechanical Behaviour of Gas Turbine Coatings, Royal Institute of technology, (2004).
7. N. P. Padture, M. Gell, and E. H. Jordan, Thermal barrier coatings for gas-turbine engine applications, Science, 296(2002) 280–284.
8. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, Mechanisms controlling the durability of thermal barrier coatings, Progress in Materials Science, 46(2001) 505–553.
9. S. Shankar, D. E. Koenig, and L. E. Dardi, Vacuum Plasma Sprayed Metallic Coatings, Journals of metals, (1981)13–20.
10. Y. Wang and G. Sayre, Commercial thermal barrier coatings with a double-layer bond coat on turbine vanes and the process repeatability, Surface & Coatings Technology, 203(2009) 2186–2192.
11. R. Ghasemi and Z. Valefi, The effect of the Re-Ni di ff usion barrier on the adhesion strength and thermal shock resistance of the NiCoCrAlY coating, Surface & Coatings Technology, 344(2018) 359–372.
12. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Second edi. John Wiley & Sons, Ltd, (2008).
13. S. Malmberg and J. Heberlein, Effect of Plasma Spray Operating Conditions on Plasma Jet Characteristics and Coating Properties, Journal of Thermal Spray Technology, 2(1993)339–344.
14. M. Djendel, O. Allaoui, and A. Bouzid, Effect of Air Plasma Spraying Parameters on the Quality of Coating, International Journal of
 Computational and Experimental Science and Engineering, 2(2016) 1–5.
15. K. E. Schneider, V. Belashchenko, M. Dratwinski, S. Siegmann, and A. Zagorski, thermal spraying for power generation components. WILEY-VCH Verlag GmbH & Co, 2006.
16. R. Ghasemi and H. Vakilifard, Plasma-sprayed nanostructured YSZ thermal barrier coatings: Thermal insulation capability and adhesion strength, Ceramics International, vol. 43, no. 12, pp. 8556–8563, 2017.
17. R. Ghasemi, R. Shoja-Razavi, R. Mozafarinia, and H. Jamali, Comparison of microstructure and mechanical properties of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings, Ceramics International, 39 (2013)8805–8813.
18. S. Sampath, X. Y. Jiang, J. Matejicek, L. Prchlik, A. Kulkarni, and A. Vaidya, Role of thermal spray processing method on the microstructure, residual stress and properties of coatings: An integrated study of Ni-5 wt. % Al bond coats, Materials Science and Engineering A, 364(2004) 216–231.
19. J. H. Lee, P. C. Tsai, and J. W. Lee, Cyclic oxidation behavior and microstructure evolution of aluminized, Pt-aluminized high velocity oxygen fuel sprayed CoNiCrAlY coatings, Thin Solid Films, 517(2009) 17 5253–5258.
20. E. Wessel et al., Temperature dependence of phase relationships in different types of MCrAlY-coatings, Surface and Coatings Technology, 202(2007)603–607.
21. R. Ghasemi and Z. Valefi, Electrodeposition of rhenium-base layer as a diffusion barrier between the NiCoCrAlY coating and a Ni-based superalloy, Journal of Alloys and Compounds, 732(2018)470–485.
22. E. Lugscheider, C. Herbst, and L. Zhao, Parameter studies on high-velocity oxy-fuel spraying of MCrAlY coatings, Surface and Coatings Technology, 108–109(1998) 16–23.
23. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Second edi. John Wiley & Sons Ltd, (2008).
24. ‘Thermal Spraying - Practice, and application’. American Welding Society, (1985).
25. A. T. Verbeek, Plasma sprayed thermal barrier coatings: Production, Characterization and testing. (1992).
26. J.-H. Lee, P.-C. Tsai, and J.-W. Lee, Cyclic oxidation behavior and microstructure evolution of aluminized, Pt-aluminized high velocity oxygen fuel sprayed CoNiCrAlY coatings, Thin Solid Films, 517(2009) 5253–5258.
27. J. Toscano et al., Temperature dependence of phase relationships in different types of MCrAlY-coatings, Surface and Coatings Technology, 202(2007) 603–607.
28. F. Ghadami, A. Zakeri, A. S. R. Aghdam, and R. Tahmasebi, Structural characteristics and high-temperature oxidation behavior of HVOF sprayed nano-CeO2 reinforced NiCoCrAlY nanocomposite coatings, Surface and Coatings Technology, 373(2019) 7–16.
29. P. Zhang et al., Effects of surface finish on the initial oxidation of HVAF-sprayed NiCoCrAlY coatings, Surface and Coatings Technology, 364(2019) 43–56.
30. M. Hasegawa, M. Iwashita, Y. Kubota, P. Dymáček, and F. Dobeš, Microstructure evolution under high temperature deformation of CoNiCrAlY bond coat alloy, Materials Science and Engineering A, 756(2019) 237–247.
31. J. Lu, H. Zhang, Y. Chen, X. Zhao, F. Guo, and P. Xiao, Effect of microstructure of a NiCoCrAlY coating fabricated by high-velocity air fuel on the isothermal oxidation, Corrosion Science, 159(2019) 108–126.
32. S. R. S. Bernard Dennis Cullity, Elements of X-ray Diffraction, 3rd ed., Prentice Hall, (2001).