بررسی میکروساختار و رفتار اکسیداسیون پوشش کامپوزیتی Ni-TiO2

نوع مقاله: مقاله پژوهشی

نویسندگان

1 بخش مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه شهید باهنر

2 بخش مهندسی مواد، دانشکده مهندسی مکانیک و مواد، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته

چکیده

فولاد زنگ نزن فریتی AISI 430 به عنوان صفحات اتصال دهنده در پیل‌های سوختی اکسید جامد استفاده می‌‌شود. به منظور بهبود مقاومت به اکسیداسیون این فولاد در شرایط کاری پیل‌های سوختی اکسید جامد می‌توان از یک لایه پوشش محافظ بر روی  اتصال دهنده‌ها استفاده کرد. در این تحقیق پوشش Ni-TiO2 بر روی زیرلایه­ای از فولاد AISI 430 به وسیله روش آبکاری الکتریکی در حمام واتس حاوی ذرات TiO2 رسوب داده شد. ترکیب و خواص پوشش Ni-TiO2 به عنوان تابعی از دانسیته مورد ارزیابی قرار گرفت. مقدار نشست TiO2 در پوشش با افزایش مقدار دانسیته جریان افزایش پیدا کرد و بعد از رسیدن به مقدار A/dm24 کاهش یافت. همچنین مقدار اندازه دانه در پوشش کامپوزیتی Ni-TiO2 ابتدا تا مقدار  A/dm23 کاهش پیدا کرد و با افزایش بیش­تر از این مقدار دوباره افزایش پیدا کرد. حداکثر میزان سختی در مقدار جریان  A/dm24 بدست آمد. برای بررسی مقاومت به اکسیداسیون، نمونه های پوشش دار و بدون پوشش به مدت 300 ساعت در معرض اکسیداسیون همدما در دمای 800 درجه سانتی­گراد قرار گرفتند. نتایج نشان داد نمونه‌های پوشش داده شده در حمام حاوی سورفکتانت SDS و بدون سورفکتانت SDS افزایش وزن کمتری نسبت به زیر لایه بدون پوشش داشتند. ساختار کامپوزیت بعد و قبل از اکسیداسیون همدما بوسیله SEM و XRD مورد مطالعه قرار گرفت.

کلیدواژه‌ها


1. D. Peckner, I.M.Bernstein, Handbook of Stainless Steels, MC Graw-Hill, 1977.

2.  X. Chen, P.Y. Hou, C.P. Jacobson, S.J. Visko and L.C. De Jonghe, Protective coating on stainless steel interconnect for SOFCs: Oxidation kinetics and electrical properties. Solid State Ionics, 176 (2005) 425-433.

3. S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Cabocho, M. Vivani, R. Molins and M. Sennour, Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys. Journal of Power Sourses, 171 (2007) 652-662.

4. H. Ebrahimifar, M. Zandrahimi, Oxidation and Electrical Behavior of a Ferritic Stainless Steel with a Mn–Co-Based Coating for SOFC Interconnect Applications. Oxidation of metals, 84 (2015) 329-344.

5. J. Wu, Y. Jiang, C. Johnson, X. Liu, DC electrodeposition of Mn–Co alloys on stainless steels for SOFC interconnect application. Journal of Power Sources, 177( 2008) 376-385.

6. H. Ebrahimifar, M. Zandrahimi, Oxidation and Electrical Behavior of Mn-Co-Coated Crofer 22 APU Steel Produced by a Pack Cementation Method for SOFC Interconnect Applications. Oxidation of metals, 84 (2015) 129-149.

7. ASM handbook, Surface engineering.(1994) 201-213.

8. A. Samide, B. Tutunaru, Study of the Corrosion Resistance of NiCeO2 CompositeCoatings Electrodeposited on Carbon Steel in Hydrochloric Acid. Chem. Biochem. Eng. Q. 25(2011) 203-208.

9. L. Du, B. Xu, S. Dong, H. Yang, W. Tu, Study of tribological characteristics and wear mechanism of nano-particle strengthened nickel-based composite coatings under abrasive contaminant lubrication. Wear, 257(2004) 1058-1063.

10. X. Peng, T.Li, W. Wu, Effect of La2O3 Particles on the Oxidation of Electrodeposited Nickel Films. Oxidation of Metals, 51(1993) 291-315.

11. A. Bund, D. Thiemig, Influence of bath composition and pH on the electrocodeposition of alumina nanoparticles and nickel. Surface and Coatings Technology, 201 (2007) 7092-7099.

12. D. T. M. Thanh, P. T. Nam, N. T. Phuong, L. X. Que, N. V. Anh, T. Hoang, Tran Dai Lam, Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel.Mater Sci Eng C Mater Biol Appl, 33 (2013) 2037-45.

13. H. Chu, J.Zhang., M. An, Influences of SiC Concentration on Sn/SiC Nanocomposite Electrodeposition International Journal of electrochemical science, 8 (2013) 1871-1884.

14. D. Galvan, Y.T. Pei, J.Th.M. De Hosson, Influence of deposition parameters on the structure and mechanical properties of nanocomposite coatings. Surface and Coatings Technology, 201 (2006) 590-598.

15. S.Shiivakumara, U.Manohar., Y. A. naik, T.V.Venkatesha, Influence of additives on electrodeposition of bright Zn–Ni alloy on. Bull. Mater. Sci. 30 (2007) 445-462.

16. A.M. Rashidi, A. Madeh, The effect of saccharin addition and bath temperature on the grain size of nanocrystalline nickel coatings. Surface and Coatings Technology, 204 (2009) 353-358.

17. K. A , Kumar., G. P. Kalaignan, V.S. Muralidharan, Direct and pulse current electrodeposition of Ni–W–TiO2 nanocomposite coatings. Ceramics International, 39 (2013) 2827-2834.

18.P. Baghery, M. Farzam, A.B. Mousavi, M. Hosseini, Ni–TiO2 nanocomposite coating with high resistance to corrosion and wear. Surface and Coatings Technology, 204 (2010) 3804-3810.

19. C.T.J, Low, R.G.A. Wills, and F.C. Walsh, Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surface and Coatings Technology, 201(2006) 371-383.

20. I. Gurrappa, L.Binder, Electrodeposition of nanostructured coatings and their characterization—a review. Sci. Technol. Adv. Mater, 9 (2008) 1-11.

21.A. Mallik, B.C. Ray,Evolution of Principle and Practice of Electrodeposited Thin Film: A Review on Effect of Temperature and Sonication. International Journal of Electrochemistry, 2011 (2011) 1-16.

22. A.George, D. Bari., Modern Electroplating. John Wiley & Sons, Inc, 2010: p. 79-114.

23. G. Parid, D. Chaira, M. Chopkar, A. Basu, Synthesis and characterization of Ni-TiO2 composite coatings by electro-co-deposition. Surface and Coatings Technology, 205 (2011) 4871-4879.

24. Y-J. Xue, X.-Z.Jia., Y-W. Zhou, W. Ma, J-S. Li, Tribilogical performance of Ni–CeO2 composite coatings by electrodeposition,. Surface Coating Technolgy, 200 (2006) 5677-5681.

25. N. S. Qu, D. Zhu, K. Chan, Fabrication of Ni–CeO2 nanocomposite by electrodeposition. Scripta Materialia, 54 (2006) 1421-1425.

26. L. Chen, L. Wang, Z. Zeng, J Zhang, Effect of surfactant on the electrodeposition and wear resistance of Ni–Al2O3 composite coatings. Materials Science and Engineering: A, 2006. 434 (2006) 319-325.

27. E. Rudnik, L. Burzyńska, L. Dolasiński,M. Misiak, Electrodeposition of nickel/SiC composites in the presence of cetyltrimethylammonium bromide. Applied Surface Science, 256(2010) 7414-7420.

28. I. U. Haq, K. Akhtar, T. I. Khan, A. A. Shah, Electrodeposition of Ni–Fe2O3 nanocomposite coating on steel. Surface and Coatings Technology, 235 (2013) 691-698.

29. L. Burzyńska, E. Rudnik, J. Koza, L. Blaz, W. Szymanski, Electrodeposition and heat treatment of nickel/silicon carbide composites. Surface and Coatings Technology, 2008. 202(2008) 2545-2556.

30. W. Chen., Y. He, W. Gao, Electrodeposition of sol-enhanced nanostructured Ni-TiO2 composite coatings. Surface and Coatings Technology, 204(2010)2487-2492.

31. C.S. Lin, C.Y. Lee, C.F. Chang, C.H. Chang, Annealing behavior of electrodeposited Ni-TiO2 composite coatings. Surface and Coatings Technology, 200 (2006) 3690-3697.

32. D. Thiemig, and A. Bund, Characterization of electrodeposited Ni–TiO2 nanocomposite coatings. Surface and Coatings Technology, 202 (2008) 2976-2984.

33. T. Lampke, A. Leopold, D. Dietrich, G. Alisch, B. Wielage., Correlation between structure and corrosion behaviour of nickel dispersion coatings containing ceramic particles of different sizes. Surface and Coatings Technology, 201 (2006), 3510-3517.

34. X. Peng, D.Ping., T. Li, W. Wu, Oxidation Behavior of a Ni-La203 Codepositeci Film on Nickel. J. Electrochem. Soc, 1998. 145(1998) 389-398.

35. X. Peng, T.Li., W. Wu, Effect of La2O3 Particles on the Oxidation of Electrodeposited Nickel Films. Oxidation of Metals, 51 (1999) 291-315.

36. W. Zhou, Y.G.Zhao., W. Li, B. Tian, S.W. Hu, Q.D. Qin, Oxidation behavior of the Y2O3-modified aluminide coating on Ti–6Al–4V alloy. Materials Science and Engineering A, 458 ( 2007) 34-38.

37. Y. J. Xue, H-B.Liu., M-M. Lan, J-S. Li, H. Li, Effect of different electrodeposition methods on oxidation resistance of Ni–CeO2 nanocomposite coating. Surface & Coatings Technology, 204 (2010) 3539-3545.

38. N. S. Qu, D. Zhu, K. Chan, Fabrication of Ni–CeO2 nanocomposite by electrodeposition. Scripta Materialia, 54 (2006) 1421-1425.

39.S. Geng, S. Qi, Q. Zhao, S. Zhu, F. Wang,Electroplated NieFe2O3 composite coating for solid oxide fuel cell interconnect application, International journal of hydrogen energy, 37 (2012) 10850-10856

40. E. Khoran, M. Zandrahimi, H. Ebrahimifar, Microstructure and Oxidation Behavior of Ni–TiO2 Composite Coating at High Temperature, Oxidation of Metals, 91 (2019) 177–189.

41. M. Alizadeh, A. Cheshmpish, Electrodeposition of Ni-Mo/Al2O3 nano-composite coatings at various deposition current densities, Applied Surfurface  Science, 466 (2019) 433-440.

42. M. Kazazi, Effect of electrodeposition current density on the morphological and pseudocapacitance characteristics of porous nano-spherical MnO2 electrode, Ceramics International, 44 (2018) 10863-10870.

43. M. Kaseem, J. H. Min, Y. G. Ko, Corrosion behavior of Al-1wt% Mg-0.85wt%Si alloy coated by micro-arc-oxidation using TiO2 and Na2MoO4 additives: Role of current density, Journal of Alloys and Compounds, 723 (2017) 448-455.

44. M.R.Dayyari, A.Amadeh,  S.Sadreddini, The influence of direct current density on microstructure and corrosion resistance of magnesium phosphate coating via cathodic electrochemical treatment, Materials Chemistry and Physics, 199 (2017) 537-542.

45. H.S.Maharana, B.Bishoyi, A.Basu, Current density dependent microstructure and texture evolution and related effects on properties of electrodeposited Ni-Al coating, Journal of Alloys and Compounds, 787 (2019) 483-494.

46. W.J. Quadakkers, J. Piron-Abellan, V. Shemet, L. Singheiser, Metallic interconnectors for solid oxide fuel cells – a review, Materials at High temperature, 20 (2003) 115-127.

47. Y. Xuetao, W.Yu., S. Dongbai, Y. Hongying, Influence of pulse parameters on the microstructure and microhardness of nickel electrodeposits, Surface and Coatings Technology, 202 (2008) 1895-1903.

 

48. T. Watanabe, Nano Plating - Microstructure Formation Theory of Plated Films and a Database of Plated Films, First Edition, Elsevier, 2004.

49. L. Benea, L., Electrodeposition of zironia particles in a copper matrix. Mater. Manuf. Process, 14(1999) 231-242.

50. J. Li, D.Wang., C. Dai, X. Hu, Microstructure characteristics of the nickel matrix in electrodeposited Ni–PSZ gradient coating. Trans. IMF, 76 (1998) 131-134

51. S. Bose, Hight temperature coatings. Elsevier Publiction, 2007

52. W-T. Tsai, K-E Huang, Microstructural aspect and oxidation resistance of an aluminide coatingon 310 stainless steel, Thin Solid Films, 366 (2000) 164-168.

53. Bloyce , P.-Y.Q., H. Dong, T. Bell, Surface modification of titanium alloysfor combined improvements in corrosion and wear resistance. Surface and Coatings Technology, 107 (1998) 125-132.

54. S. Seal, S.K.B., and S. K. Roy, Improvement in the Oxidation Behavior of Austenitic Stainless Steels by Superficially Applied, Cerium Oxide Coatings.Oxidation of Metals, 41 (1994) 78-139.