استفاده از فیلم های نازک نانوذرات ZnS حاوی مس جهت تخریب رنگدانه های سمی متیلن بلو

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده علوم پایه، دانشگاه مراغه، مراغه، ایران

2 گروه اپتیک و لیزر، دانشکده فنی و مهندسی، دانشگاه بناب، ایران

چکیده

فیلم­های نازک نانوذرات ZnS خالص وZnS  آلائیده به Cu (ZnS:Cu) با استفاده از روش جذب و واکنش متوالی لایه­ی یونی (SILAR) تهیه شد. فیلم­های نازک به دست آمده با استفاده از پراش­سنج اشعه ایکس (XRD)، میکروسکوپ الکترونی روبشی (SEM) و طیف جذبی مورد بررسی قرار گرفتند. تخریب فوتوکاتالیستی مولکول­های رنگی متیلن بلو (MB) با کنترل میزان غلظت محلول MB با استفاده از اسپکتروفتومتر جذب UV-vis ارزیابی شد. تغییرات غلظت Cu در فیلم­های نازک نانوذرات ZnS نشان داد که نمونه حاوی 2 درصد وزنی Cu برای تخریب مولکول­های رنگی بسیار موثرتر می­باشد. نتایج تجربی نشان دادند که بازده تخریب فیلم­های نازک فوتوکاتالیست پس از 30 دقیقه زمان تابش UV حدود 36٪ بود و بیشترین بازده تخریب (56٪) با افزایش زمان قرار گرفتن در معرض تابش به مدت360 دقیقه حاصل شد.

کلیدواژه‌ها


1.Lachheb, H, Puzenat, E, Houas, A, et al.
Photocatalytic degradation of various types of dyes in water by UV-irradiated titania, Applied Catalysis B: Environmental 2002; 39: 75–90.
2. Rafatullah M, Sulaiman O, Hashim R, Ahmad A., Adsorption of methylene blue on low-cost adsorbents: a review, J hazard mater 2010; 177(1( 70-80.
3. Wang J, Li C, Zhuang H, Zhang J. Photocatalytic degradation of methylene blue and inactivation of Gram-negative bacteria by TiO 2 nanoparticles in aqueous suspension, Food Control, 34(2)(2013) 372-7.
4. Masombaigi  H, Rezaee A, Nasiri A. Photocatalytic Degradation of Methylene
Blue using ZnO Nano-Particles,
Iran. J. Health & Environ, 2(2009) 3.
5. Kamat PS, Huehn R, R. N. Semiconductor nanostructures for simultaneous detection and degradation of organic contaminants in water, Photochem Photobiol Chem, 42(2008)37-57.
6. Masoumbeigi H, Rezaee A, Khataee A, SJ. H., Effect of UV radiation intensity on photocatalytic removal of E. coli using immobilized ZnO nanoparticles, Trauma Mon. Kowsar medical Journal, (2009) 14(3):149-156.
7. J.S. Hu, L.L. Ren, Y.G. Guo, H.P. Liang, A.M. Cao, L.J. Wan, C.L. Bai, Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles, Angew, Chem. Int. Ed. 44 (2005) 1269–1273.
8. J. Zhang, J. Yu, Y. Zhang, Q. Li, J.R. Gong, Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer, Nano Lett. 11 (2011) 4774–4779.
9. X. Chen, H. Xu, N. Xu, F. Zhao, W. Lin, G. Lin, Y. Fu, Z. Huang, H. Wang, M. Wu, Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network, Inorg. Chem. 42 (2003) 3100–3106.
10. Y. Wang, J. Zhang, Y. Yang, F. Huang, J. Zheng, D. Chen, F. Yan, Z. Lin, C. Wang, NaOH concentration effect on the oriented attachment growth kinetics of ZnS, J. Phys. Chem. B 111 (2007) 5290–5294.
11. S. Harish, J. Archana, M. Navaneethan, S. Ponnusamy, Ajay Singh, Vinay Gupta, D. K. Aswal,d H. Ikedaa and Y. Hayakawa, Synergetic effect of CuS@ZnS nanostructures on photocatalytic degradation of organic pollutant under visible light irradiation, The Royal Society of Chemistry, 7 (2017) 34366–34375.
12. H.R. Pouretedal, A. Norozi, M.H. Keshavarz, A. Semnani, Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes, J. Hazard. Mater. 162 (2009) 674–681.
13. P. Periyat, E. Declan, M. Cormack, S.J. Hinder, S.C. Pillai, One-pot synthesis of anionic (Nitrogen) and cationic (Sulfur) Co-doped high temperature stable visible light active anatase photocatalysts, J. Phys. Chem. C 113 (2009) 3246–3253.
14. R.K. Srivastava, N. Pandey, S.K. Mishra, Effect of Cu concentration on the photoconductivity properties of ZnS nanoparticles synthesized by co-precipitation method, Mater. Sci. Semicond. Process. 16 (2013) 1659–1664.
15. M. Mehrabian, S. Aslyousefzadeh, Synthesis and evaluation of Al:ZnO nanoparticles as electron transporter layer in hybrid solar cells, adv, Sci. Eng. Med. 7 (2015) 195–199.