تاثیر نانوذرات TiO2 بر مورفولوژی سطحی و خشک شدن پوشش کامپوزیتی HA-TiO2 به روش الکتروفورتیک روی آلیاژ NiTi

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه بناب، بناب

2 مرکز تحقیقات مواد پیشرفته و فرآوری مواد معدنی، دانشکده مهندسی مواد، دانشگاه صنعتی سهند، تبریز

چکیده

امروزه، بدلیل خواص زیستی مطلوب هیدروکسی­اپاتیت، توجه زیادی به آن به عنوان یک سرامیک زیستی برای پوشش­دهی کاشتنی­های فلزی می­شود. به منظور بهبود خواص پوشش هیدروکسی­اپاتیت، بویژه ترک خوردگی ناشی از خشک شدن و عملیات تف جوشی، استفاده از پوشش­های کامپوزیتی در کانون توجه قرار گرفته است. در این پژوهش پوشش­های کامپوزیتی هیدروکسی آپاتیت – اکسید تیتانیم حاوی مقادیر 0، 5، 10 و 20 درصد وزنی اکسید تیتانیم از طریق فرایند پوشش­دهی الکتروفورتیک بر روی زیر لایه­ی NiTi ایجاد شدند. محلول سوسپانسیون مورد استفاده n – بوتانول و تری اتانول آمین بود. عملیات رسوبگذاری در 60 ولت به مدت 120 ثانیه بر روی کاتد انجام گرفت. پس از رسوبگذاری، پوشش­ها در دمای اتاق خشک شدند و تحت عملیات تف­جوشی قرار گرفتند. از تفرق اشعه ایکس (XRD) جهت شناسایی فازها و از SEM برای بررسی­های ریز ساختاری و مورفولوژیکی پوشش­ها استفاده شد. ترکیب شیمیایی نسبی پوشش­­ با استفاده از آنالیز تفکیک انرژی (EDX) بررسی شد. نتایج نشان می­دهند افزایش نانوذرات اکسید تیتانیم تا 10% وزنی باعث بهبود رفتار پوشش کامپوزیتی هیدروکسی آپاتیت – اکسید تیتانیم در فرایند خشک شدن می­شود و استحکام چسبندگی پوشش کامپوزیتی هیدروکسی‌آپاتیت – 10% اکسیدتیتانیم تا  MPa3/2±1/21 افزایش پیدا می­کند که در مقایسه با پوشش هیدروکسی آپاتیت خالص (MPa 1/3±1/18) بهبود یافته است.

کلیدواژه‌ها


1. M.F. Chen, X.J. Yang, R.X. Hu, Z.D. Cui, H.C. Man, Bioactive NiTi shape memory alloy used as bone bonding implants, Materials Science and Engineering C, 24 (2004) 497–502.
2. J. Musialek, P. Filip, J. Nieslanik, Titanium-nickel shape memory clamps in small bone surgery, Arch Orthop Trauma Surg, 117 (1998) 341–344.
3. A. Bansiddhi, T.D. Sargeant, S.I. Stupp, D.C. Dunand, Porous NiTi for bone implants: A review, Acta Biomaterialia, 4 (2008) 773–782.
4. W. Donnlley, J. Callaghan, Hydroxyapatite coating in the adult hip, Lippincottraven pub, (1998) 1041-1054.
5. I. Zhitomirsky, Electrophoretic deposition of hydroxyapatite, Journal of Materials Science: Materials in Medicine, 8 (1997) 213- 219.
6. I. Zhitomirsky, Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspect, Advances in Colloid and Interface Science, 97 (2002) 279-317.
7. M. Javidi, S. Javadpour, M.E. Bahrololoom, J. Ma, Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel, Materials Science and Engineering C, 28 (2008) 1509-1515.
8. X.F. Xiao, R.F. Liu, Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings, Materials Letters, 60 (2006) 2627–2632.
9. P. Sarker, P. S. Nicholson, Electrophoretic Deposition (EPD): Mechanism, Kinetics, and Application to ceramics, Journal of the American Ceramic Society, 79 (1996) 1987-2002.
10. E. Karimi, J. Khalil-Allafi, V. Khalili, Electrophoretic deposition of double-layer HA/Al composite coating on NiTi, Materials Science and Engineering C, 58 (2016) 882–890.
11. J. C. Huang, Y. J. Ni, Z. C. Wang, Preparation of hydroxyapatite functionally gradient coating on titanium substrate
using a combination of electrophoretic deposition and reaction bonding process
, Surface & Coatings Technology, 204 (2010) 3387–3392.
12. F. Samanipour, M.R. Bayati, F. Golestani-Fard, H. R. Zargar, A. R. Mirhabibi, V. Shoaei-Rad, S. Abbasi, Innovative fabrication of ZrO2–HAp–TiO2 nano/micro-structured composites through MAO/EPD combined method, Materials Letters, 65 (2011) 926–928.
13. M. Farrokhi‐Rad, Effect of Dispersants on the Electrophoretic Deposition of Hydroxyapatite Carbon Nanotubes Nanocomposite Coatings, Journal of the American Ceramic Society, 99 (2016) 2947–2955.
14. L. Mohan, D. Durgalakshmi, M. Geetha, T. S. N. Sankara-Narayanan, R. Asokamani, Electrophoretic deposition of nanocomposite (HAp + TiO2) on titanium alloy for biomedical applications, Ceramics International 38 (2012) 3435–3443.
15. H. Farnoush, G. Aldıç, H. Çimenoğlu,  Functionally graded HA–TiO2 nanostructured composite coating on Ti–6Al–4V substrate via electrophoretic deposition, Surface and Coatings Technology, 265 (2015) 7–15.
16. P. C. Rath, L. Besra, B. P. Singh, S. Bhattacharjee, Titania/hydroxyapatite bi-layer coating on Ti metal by electrophoretic deposition: Characterization and corrosion studies, Ceramics International, 38 (2012) 3209–3216.
17. V. Khalili, J. Khalil-Allafi, C. Sengstockd, Y. Motemani, A. Paulsen, J. Frenzele, G. Eggeler, M. Koeller, Characterization of mechanical properties of hydroxyapatite–silicon–multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application, Journal of the Mechanical Behavior of Biomedical Materials, 59 (2016) 337–352.
18. C. Kaya, I. Singh, A. R. Boccaccini, Multiwalled carbon nanotubereinforced hydroxyapatite layers on Ti6Al4V medical implants by Electrophoretic Deposition (EPD), Advanced Engineering Materials, 10 (2008) 131–138.
19. K. Grandfield, F. Sun, M. Fitz-Patrick, M. Cheong, I. Zhitomirsky, Electrophoretic deposition of polymer-carbon nanotube–hydroxyapatite composites, Surface and Coatings Technology, 203(2009) 1481–1487.
20. J. B. Park, J.D. Bronzino, Biomaterials, Principles and Applications, CRC Press, 2002.
21. O. Albayrak, C. Oncel, M. Tefek, S. Altintas, Effects of calcinations on electrophoretic deposition of calcinations of naturally derived and chemically synthesized, Reviews on Advanced Materials Science, 15 (2007) 10-15.
22. B. Zhang, C. T. Kwok, Hydroxyapatite-anatase-carbon nanotube nanocomposite coatings fabricated by electrophoretic codeposition for biomedical applications, Journal of Materials Science: Materials in Medicine, 22 (2011) 2249–2259.
23. J. Weng, X. Liu, X. Zhang, X. Ji, Thermal decomposition of hydroxyapatite structure induced by titanium and its dioxide, Journal of Materials Science Letters, 13 (1994) 159–161.
24. M. J.Santillán, N. E. Quaranta, F. Membrives, J. A. Roether, A. R. Boccaccini, Processing and characterization of biocompatible titania coatings by electrophoretic deposition, Key Engineering Materials, 412 (2009) 189–194.
25. M. E. Bahrololoom, M. Javidi, S. Javadpour, J. Ma, Characterisation of natural hydroxyapatite extracted from bovine cortical bone ash, Journal of Ceramic Processing Research, 10 (2009) 129–138.
26. Q. Jiang, D. S. Zhao, M. Zhao, Size-dependent interface energy and related interface stress, Acta mater, 49 (2001) 3143–3147.
27. S. W. Scherer, Theory of Drying, Journal of the American Ceramic Society, 73 (1990) 3-14. 
28. L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Progress in Materials Science, 52 (2007) 1–61.
29. S. Dor, S. Rühle, A. Ofir, M. Adler, L. Grinis, A. Zaban, The influence of suspension composition and deposition mode on the electrophoretic deposition of TiO2 nanoparticle agglomerates, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 342 (2009) 70–75.
30. M. Javidi, S. Javadpour, M.E. Bahrololoom, J. Ma, Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel, Materials Science and Engineering C, 28 (2008) 1509–1515.
31. H. Maleki-Ghaleh, V. Khalili, J. Khalil-Allafi, M. Javidi, Hydroxyapatite coating on NiTi shape memory alloy by electrophoretic deposition process, Surface and Coatings Technology, 208 (2012) 57–63.