بررسی تحلیلی و المان محدود تأثیر تریپ بر تنش و کرنش حرارتی و رشد ترک در پوشش‌های سد حرارتی

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی

چکیده

تمایل به افزایش دمای محصولات احتراق توربین در نیروگاه‌ها به جهت بهبود بازده و کاهش هزینه سوخت، سبب استفاده از پوشش‌های سد حرارتی بعنوان محافظ قطعات داغ موتور‌های توربینی گردیده است. سیستم پوشش شامل پوشش فوقانی سرامیکی، لایه میانی اکسیدی که به صورت حرارتی رشد یافته و یک پوشش پیوندی فلزی است. در این مقاله آسیب ناشی از شوک حرارتی در پوشش هنگام توقف ناگهانی توربین (تریپ) با روش‌های عددی و اجزای محدود در شرایط تنش صفحه‌ای، بررسی شده است. هندسه  به کار برده شده به صورت یک دیسک نازک و در شرایط تقارن محوری است. نتایج نشان می‌دهد که افت پر شتاب دما موجب افزایش ناگهانی در اندازه کرنش و تنش حرارتی در لایه فوقانی سرامیکی پوشش می‌گردد که منجر به ایجاد رفتاری مشابه در ضریب شدت تنش ترک سطحی پوشش شده و آن را به مقدار بحرانی نزدیک می‌کند. این شرایط در مقایسه با ابتدای چرخه و در بازه دما ثابت، تاثیر شایانی در افزایش نرخ رشد و طول ترک ایجاد می کند. علاوه بر این، بررسی‌های تحلیلی و اجزای محدود صورت گرفته به خوبی یکدیگر را تأیید کرده و نتایج حاصل از بررسی رفتار ترک نیز با مطالعات دیگر پژوهشگران سازگار است.

کلیدواژه‌ها


1. U. Hermosilla, Mechanical modeling of thermal barrier coatings at high temperatures, PhD Thesis, University of Nottingham, (2008) 69-70.

2. F. Schubert, G. Fleury, T. Steinhaus, Modelling of the mechanical behaviour of the single-crystal turbine alloy CMSX-4 during thermomechanical loading, Modelling and Simulation in Materials Science and Engineering, 8(6) (2000) 947-957.

3. M. Segersäll, Nickel-Based Single-Crystal Superalloys: the crystal orientation influence on high temperature properties, PhD Thesis, University of Linkoping, (2013) 13-19.

4. M. Białas, Finite element analysis of stress distribution in thermal barrier coatings, Surface and Coatings Technology, 202(24) (2008) 6002-6010.

5. M. Gupta, Design of thermal barrier coatings: A modelling approach, Springer press, (2014)7-15.

6. I. Gurrappa, Gas turbines, Sciyo press (2010) 226-229.

7. S. Dalkilic, A. Tanatmis, Damage evaluation of thermal barrier coatings under high temperature low cycle fatigue conditions, in: 13th International Conference on Aerospace Sciences & Aviation Technology, Egypt, (2009).

8. S. Ahmadian, E. Jordan, Explanation of the effect of rapid cycling on oxidation, rumpling, microcracking and lifetime of air plasma sprayed thermal barrier coatings, Surface and Coatings Technology, 244 (2014)109-116.

9. M. Karger, R. Vaßen, D. Stöver, Atmospheric plasma sprayed thermal barrier coatings with high segmentation crack densities: Spraying process, microstructure and thermal cycling behavior, Surface and Coatings Technology, 206(1) (2011) 16-23.

10. N. Fleck, A. Cocks, S. Lampenscherf, Thermal shock resistance of air plasma sprayed thermal barrier coatings, Journal of the European Ceramic Society, 34(11) (2014) 2687-2694.

11. Y. Liu, C. Persson, J. Wigren, Experimental and numerical life prediction of thermally cycled thermal barrier coatings, Journal of thermal spray technology, 13(3) (2004) 415-424.

12. H. Dong, G.J. Yang, H.N. Cai, C.X. Li, C.J. Li, Propagation feature of cracks in plasma-sprayed YSZ coatings under gradient thermal cycling, Ceramics International, 41(3) (2015) 3481-3489.

13. M. Bäker, The influence of creep properties on crack propagation in thermal barrier coatings, in: 15th International Conference on the Strength of Materials, Germany, (2010).

14. M. Hernandez, D. Cojocaru, M. Bartsch, A. Karlsson, On the opening of a class of fatigue cracks due to thermo-mechanical fatigue testing of thermal barrier coatings, Computational Materials Science, 50(9) (2011) 2561-2572.

15. M. Ali, S. Nusier, G. Newaz, Creep effects on early damage initiation in a TBC system, Journal of materials science, 39(10) (2004) 3383-3390.

16. H. Dong, G.J. Yang, H.N. Cai, H. Ding, C.X. Li, C.J. Li, The influence of temperature gradient across YSZ on thermal cyclic lifetime of plasma-sprayed thermal barrier coatings, Ceramics International, 41(9) (2015) 11046-11056.

17. W. Mao, Y. Zhou, L. Yang, X.Yu, Modeling of residual stresses variation with thermal cycling in thermal barrier coatings, Mechanics of materials, 38(12) (2006) 1118-1127.

18. R.B. Hetnarski, M.R. Eslami, G. Gladwell, Thermal stresses: advanced theory and applications, Springer press, 41 (2009) 258-260.

19. L.Wang, J. Yang, J. Ni, C. Liu, X. Zhong, F. Shao, H. Zhao, S. Tao, Y. Wang, Influence of cracks in APS-TBCs on stress around TGO during thermal cycling: A numerical simulation study, Surface and Coatings Technology, 285 (2016) 98-112.

20. A.G. Evans, D. Mumm, J. Hutchinson, G. Meier, F. Pettit, Mechanisms controlling the durability of thermal barrier coatings, Progress in materials science, 46(5) (2001) 505-553.

21. F. Traeger, M. Ahrens, R. Vaßen, D. Stöver, A life time model for ceramic thermal barrier coatings, Materials Science and Engineering A, 358(1) (2003) 255-265.

22. R.P. Wei, Fracture mechanics: Integration of mechanics, materials science and chemistry, Cambridge University press, (2010) 111-115.

23. A. Razak, Industrial gas turbines: performance and operability, CRC press, (2007) 425-428.