ارتقای سختی آلیاژ هوایی تیتانیوم Ti-6Al-4V با پوشش کامپوزیتی ایجاد شده به روش جوشکاری TIG

نویسندگان

گروه مواد، دانشکده مکانیک، دانشگاه پدافند هوایی خاتم‌الانبیاء(ص) گروه مواد، دانشکده مکانیک، دانشگاه صنعتی نوشیروانی بابل

چکیده

آلیاژ تیتانیومTi-6Al-4V  به­دلیل دارا بودن خواصی نظیر نسبت استحکام به وزن زیاد و مقاومت به خوردگی دارای کاربردهای مهمی در صنایع هوافضا است. در مقابل، این آلیاژ مقاومت به سایش ضعیفی به­ویژه تحت بارهای زیاد نشان می­دهد. در این مقاله، با هدف بهبود سختی و در نتیجه افزایش مقاومت سایشی آلیاژTi-6Al-4V ، ذرات سرامیکی و بسیار سخت B4C به حوضچه مذاب در فرآیند جوشکاری TIG، افزوده شد. بررسی­های میکروساختاری با روش­های پراش اشعه ایکس و میکروسکوپ الکترونی روبشی نشان داد که ذرات کاربید بور تقریباً به­طور کامل در زمینه تیتانیومی حل شده و با ورود بور و کربن به مذاب تیتانیوم و واکنش با آن، فازهای بر مبنای TiB و TiC تشکیل شدند. مورفولوژی­های فاز بر مبنای TiB به دو صورت تیغه­ای و یوتکتیک­شکل و فاز بر مبنای TiC کروی­مانند بود. نتایج نشان داد که مقدار سختی سطحی ایجاد شده، به مقدار 1020 ویکرز رسید که حدود 3 برابر بیشتر از آلیاژ پایه بود.

کلیدواژه‌ها


1. H. Lijian and Z. Xiaonong, Surface modification of pure titanium treated with B4C at high temperature, Surface & Coatings Technology, 200(2006) 3016–3020.
2. G. Lutjering, Titanium, Springer, New York, (2003).
3. S. Zhang, W. Wu, M. Wang and H. Man, In-Situ synthesized and wear performance of TiC particle reinforced composite coating on alloy Ti-6Al-4V, Surface & Coatings Technology, 138(2001) 95-100.
4. P.Kaestner, J.Olfe and Rie K., Plasma-assisted boriding of pure titanium and Ti-6Al-4V, Surface and Coatings Technology, 142(2001) 248-252.
5. T. Eckardt, K. Bewilogua, G. van der Kolk, T. Hurkmans, T. Trinh and Fleischer W., Improving tribological properties of sputtered boron carbide coatings by process  modifications, Surface and Coatings Technology, 126(2000) 69-75.
6. H. Man, S. Zhang, F. Cheng and T. Yue, Microstructure and Formation Mechanism of In-Situ Synthesized TiC/Ti Surface MMC on Ti-6Al-4V by Laser Cladding, Scripta Materialia, 44(2001) 2801-2807.
7. Q. Yunlian, D. Ju, H. Quan and Z. Liying, Electron beam welding, laser beam welding, and gas tungsten arc welding of titanium sheet, Materials Science & Engineering, 280(2000) 177-181.
8. G. Thawari, G. Sundararjan and S. Joshi, Laser surface alloying of medium carbon steel, Thin Solid Films, 423(2003) 41-53.
9. K. Euh, J. Lee and S. Lee, Microstructural modification and hardness improvement in boride/Ti-6Al-4V surface-alloyed materials fabricated by high-energy electron beam irradiation, Scripta Mater., 45(2001) 1-6.
10. E. Yun, K. Lee and S. Lee, Improvement of high-temperature hardness of (TiC,TiB)/Ti–6Al–4V surface composites fabricated by high-energy electron-beam irradiation, Surface and Coatings Technology, 184(2004) 74–83.
11. E. Yun, K. Lee and S. Lee, Correlation of microstructure with high-temperature hardness of (TiC,TiN)/Ti-6Al-4V surface composites fabricated by high-energy electron beam irradiation, Surface & Coatings Technology, 191(2005) 83-89.
12. J. Cheol and E. Yun, Improvement of hardness and wear resistance in SiC/Ti-6Al-4V surface composites fabricated by high-energy electron beam irradiation, Materials Science & Engineering, 351(2003) 98-108.
13. J. Oh and S. Lee, Correlation of microstructure with hardness and fracture properties of (TiC,SiC)/Ti-6Al-4V surface composites fabricated by high-energy electron beam irradiation, Surface & Coatings Technology, 179(2004) 340-348.
14. S. Mridha, H. Ong, L. Poh and P. Cheang, Intermetallic coatings produced by TIG surface melting, Materials Processing Technology, 113(2001) 516-520.
15. M. Eroglu and N. Zdemir, Tungsten-inert gas surface alloying of low carbon Steel, Surface & Coatings Technology, 154(2002) 209-217.
16. B. Kooi, Y. Pei and M. Hosson, The evolution of microstructure in laser clad TiB-Ti composite coating, Acta Materialia, 51(2003) 831-845.
17. B. Courant and J. Hantzper, Structure and hardness of titanium surfaces carburized by pulsed laser melting with graphite addition, Journal of Materials Processing Technology, 160(2005) 374–381.
24. K. Farokhzadeh and A. Edrisy, Transition between mild and severe wear in titanium alloys, Tribology International, 94(2016) 98–111.
25. N. Kishore, S. Sundara, R. Mythilib and S. Saroja, Correlation of microstructure with mechanical properties of TIG weldments of Ti–6Al–4V made with and without current pulsing, Materials Characterization, 58(2007) 581–587.
26. B. Mehdia, R. Badjia, V. Jib, B. Allilic, D. Bradaic and F. Deschaux, Microstructure and residual stresses in    Ti-6Al-4V alloy pulsed and unpulsed TIG welds, Journal of Materials Processing Technology, 231(2016) 441–448.
27. G. Mi and Y. Wei, A coupled thermal and metallurgical model for welding simulation of Ti–6Al–4V alloy, Journal of Materials Processing Technology, 214(2014) 2434–2443.
28. K. Euh, J. Lee, S. Lee, Y. Koo and N. J. Kim, Microstructural modification and hardness improvement in boride/Ti-6Al-4V surface-alloyed materials fabricated by high-energy electron beam irradiation, Scripta Mater., 45(2001) 1-6.
29. E. Yun, K. Lee and Sunghak Lee, Improvement of high-temperature hardness of (TiC, TiB)/Ti–6Al–4V surface composites fabricated by high-energy electron-beam irradiation, Surface and Coatings Technology, 184(2004) 74–83.
30. E. Yun, K. Lee, S. Lee, Correlation of microstructure with high-temperature hardness of (TiC,TiN)/Ti-6Al-4V surface composites fabricated by high-energy electron beam irradiation, Surface & Coatings Technology, 191(2005) 83-89.
31. C. Dong, A. Wu, S. Hao, J. Zou, Z. Liu, P. Zhong, A. Zhang, T. Xu, J. Chen, J. Xu, Q. Liu and Z. Zhou, Surface treatment by high current pulsed electron beam, Surface and Coatings Technology, 163-164(2003), 620-624.
32. J. C. Oh, K. Euh, S. Lee, Y. Koo and N. J. Kim, Hardness improvement of TiB2/Ti surface-alloyed material fabricated by high-energy electron beam irradiation, Scripta Materialia, 39(1998), 1389-1394.
33. M. Labudovic and T. I. Khan, Use of tungsten metal arc heat source for surface modification of Ti-6Al-4V alloy, Materials Science & Technology, 14(1998) 357-361.
34. S. Mridha, H. S. Ong, L. S. Poh and P. Cheang, Intermetallic coatings produced by TIG surface melting, Materials Processing Technology, 113(2001) 516-520.
35. S. Mridha and B. S. Ng, Addition of ceramic particles to TIG melted titanium surfaces, Surface Engineering, 15(1999) 210-215.
36. K. G. Budinski, Tribological properties of titanium alloys, Wear, 151(1991), 203-217.
37. J. Cheol Oh, D. Choo and S. Lee, Microstructural modification and hardness improvement of titanium-base surface-alloyed materials fabricated by high-energy electron beam irradiation, Surface and Coatings Technology, 127(2000) 76-85.
38. B. Courant, J. J. Hantzpergue, L. Avril and S. Benayoun, Structure and hardness of titanium surfaces carburized by pulsed laser melting with graphite addition, Journal of Materials Processing Technology, 160(2005) 374–381.
39. T. Vieira, A. Louise and C. Enrique, Analysis of mean and RMS current welding in the pulsed TIG welding process, Journal of Materials Processing Technology, 231(2016) 449–455.
40. L. Zhang, X. Li and Z. Nie, Comparison of microstructure and mechanical properties of TIG and laser welding joints of a new Al–Zn–Mg–Cu alloy, Materials & Design, 92(2016) 880–887.
41. H. Tanigawa, A. Aburadani, N. Takeda and S. Shigematsu, Comparative study of laser and TIG welding for application to ITER blanket hydraulic connection, Fusion Engineering and Design, 87(2012) 999–1003.
42. A. Bîrdeanu, C. Ciucă and A. Puicea, Pulsed LASER-(micro)TIG hybrid welding: Process characteristics, Journal of Materials Processing Technology, Vol. 212(2012) 890–902.