ایجاد پوشش نانو ذرات نقره/هیدروکسی آپاتیت/بتا تری کلسیم فسفات بر تیتانیم به روش سل-ژل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی پزشکی، واحد علوم و تحقیقات ، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشکده مهندسی و علم مواد، دانشگاه صنعتی شریف، تهران، ایران

3 بخش بانک سلولی ایران ، انستیتو پاستور ایران، تهران، ایران

چکیده

زیست فعالی و خواص آنتی باکتریال از فاکتورهای موثر بر موفقیت آمیز بودن کاشتنی تیتانیمی مورد استفاده در ارتوپدی است. در پژوهش حاضر بررسی عوامل مذکور با پوشش دهی تیتانیم توسط پوشش کامپوزیتیHP ( پوشش حاوی نسبت‌ یکسان هیدروکسی آپاتیت(HA) و بتا تری کلسیم فسفات (ꞵ-TCP)) و نانوذرات نقره مورد مطالعه قرار گرفت. برای این منظور پوشش کامپوزیتی یکنواخت HP و nAg از طریق سل-ژل بر تیتانیم انجام شد. مشخصه یابی پوشش کامپوزیتی با استفاده از میکروسکوپ الکترونی روبشی (SEM) به همراه آنالیز پراش انرژی پرتو ایکس (EDX)، آزمون‌ MTT و چسبندگی باکتریایی انجام شد. نتایج نشان داد که تیتانیم با پوشش HP/nAg علاوه بر توانایی ایجاد خواص آنتی باکتریایی و زیست فعالی، در نسبت برابر از HA و ꞵ-TCP، زنده مانی و تکثیر سلولی نسبت به نمونه بدون پوشش افزایش داده است. نتایج کلی حاصل از ارزیابی‌های بیولوژیکی نشان داد، پوشش سل-ژل حاوی HP (ꞵ-TCP:HA = 50:50) همراه با 2 درصد وزنی nAg بر ورقه های Ti یک کاندید مناسب برای مطالعات بعدی می‌باشد.

کلیدواژه‌ها


  1. X. Liu, P.K. Chu, and C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports,. 47(3-4)) 2004( 49-121.
  2. C. Mas-MorunoP. M Dorfner, F. ManzenriederS. Neubauer, U. Reuning, R. Burgkart and H. Kessler , Behavior of primary human osteoblasts on trimmed and sandblasted Ti6Al4V surfaces functionalized with integrin αvβ3‐selective cyclic RGD peptides. Journal of biomedical materials research Part A, 101(1)( 2013) 87-97.
  3. W. Chen, S. Oh, A.P. Ong, N. Oh, Y. Liu, H.S. Courtney, M. Appleford and J.L. Ong., Antibacterial and osteogenic properties of silver‐containing hydroxyapatite coatings produced using a sol gel process. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 82(4)( 2007)899-906.
  4. I.S. Kim, and P.N. Kumta, Sol–gel synthesis and characterization of nanostructuredhydroxyapatite powder. materials science and Engineering: B, 111(2-3)( 2004) 232-236.
  5. D.M. Liu, T. Troczynski, and W.J. Tseng, Water-based sol–gel synthesis of hydroxyapatite: process development. Biomaterials, 22(13)( 2001)1721-1730.
  6. M. Ferraz, F. Monteiro, and C. Manuel, Hydroxyapatite nanoparticles: a review of preparation methodologies. Journal of Applied Biomaterials and Biomechanics, 2(2)( 2004) 74-80.
  7. D.W. HutmacherJ.T. SchantzC.X. F. LamK.C. Tan and T.C. Lim, State of the art and future directions of scaffold‐based bone engineering from a biomaterials perspective. Journal of tissue engineering and regenerative medicine, 1(4)( 2007) 245-260.
  8. S. WuX. LiuK. YeungC. Liu and X-J Yang, Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering: R: Reports, 80(2014)1-36.
  9. S.T. Bendtsen, S.P. Quinnell, and M. Wei, Development of a novel alginate polyvinyl alcohol‐hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Journal of Biomedical Materials Research Part A, 105(5)( 2017)1457-1468.
  10. T.E. Rams, T.W. Roberts, D. Feik, A. K. Molzan and J. Slots, Clinical and microbiological findings on newly inserted hydroxyapatite coated and pure titanium human dental implants. Clinical oral implants research, 2(3)( 1991) 121-127.
  11. C. S. Ciobanu, S. L. Iconaru, M. C. Chifiriuc, A. Costescu, P. Coustumer,  and D. Predoi , Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. Applied Surface Science, 257(9)( 2011) 4510-4518.
  12. R.K. Saini, L.P. Bagri, and A. Bajpai, Nano-silver hydroxyapatite based antibacterial 3D scaffolds of gelatin/alginate/poly (vinyl alcohol)

for bone tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 177(2019) 211-218.

  1. M. U. Aslam Khan, M. Al-Thebaiti, M. U. Hashmi, S. Aftab, S. I. Abd Razak, Sh. Abu Hassan, M. R. Abdul Kadir and R. Amin, Synthesis of silver-coated bioactive nanocomposite scaffolds based on grafted beta-glucan/hydroxyapatite via freeze-drying method: Anti-microbial and biocompatibility evaluation for bone tissue engineering. Materials, 13(4)( 2020) 971.
  2. H. Shi, Z. Zhou, W. Li, Y. Fan, Z. Li and J. Wei, Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction. Crystals, 11(2) (2021) 149.
  3. A. A Vu, S. F. Robertson, D. Ke,,A. Bandyopadhyayand S. Bose, Mechanical and biological properties of ZnO, SiO2, and Ag2O doped plasma sprayed hydroxyapatite coating for orthopaedic and dental applications. Acta biomaterialia, 92(2019).325-335.
  4. Y-S. Park, K-Y. Yi, I-S. Lee, C-H. Han and Y-C. Jung, The effects of ion beam-assisted deposition of hydroxyapatite on the grit-blasted surface of endosseous implants in rabbit tibiae. International Journal of Oral & Maxillofacial Implants, (2005) 20(1)
  5. A. Ivanova,M. A. Surmeneva, A. I. Tyurin, T. S. Pirozhkova, I. A. Shuvarin, O. Prymak, M. Epple, M. V. Chaikina and R. A. Surmenev, Fabrication and physico-mechanical properties of thin magnetron sputter deposited silver-containing hydroxyapatite films. Applied Surface Science, 360(2016) 929-935.
  6. F. MuhaffelG. CempuraM. MenekseA. Czyrska-FilemonowiczN. Karaguler and H. Cimenoglu, Characteristics of multi-layer coatings synthesized on Ti6Al4V alloy by micro-arc oxidation in silver nitrate added electrolytes. Surface and Coatings Technology, 307(2016) 308-315.
  7. A. Montenero, G. Gnappi, F. Ferrari, M. Cesari, E. Salvioli, L. Mattogno, S. Kaciulis and M. Fini, Sol-gel derived hydroxyapatite coatings on titanium substrate. Journal of Materials science, 35(11)( 2000) 2791-2797.
  8. T. Peltola, M. Pätsi, H. Rahiala, I. Kangasniemi and A. Yli-Urpo, Calcium phosphate induction by sol-gel derived titania coatings on titanium substrates in vitro. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 41(3)( 1998) 504-501.
  9. D. Haddow, P. James, and R.Van Noort, Characterization of sol-gel surfaces for biomedical applications. Journal of Materials Science: Materials in Medicine, 7(5)( 1996) 255-260.
  10. S. Jadalannagari, K. Deshmukh, S. R. Ramanan and M. Kowshik, Antimicrobial activity of hemocompatible silver doped hydroxyapatite nanoparticles synthesized by modified sol–gel technique. Applied Nanoscience, 4(2)(2014) 133-141.
  11. J. Qu, X. Lu, D. Li, Y. Ding, Y. Leng, J. Weng, S. Qu, B. Feng and F. Watari, Silver/hydroxyapatite composite coatings on porous titanium surfaces by sol gel method. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 97(1)(2011)40-48.
  12. S. L. Iconaru, P. Chapon, P. L. Coustumer, and D. Predoi, Antimicrobial activity of thin solid films of silver doped hydroxyapatite prepared by sol-gel method. The Scientific World Journal, (2014).
  13. H. W. Kim, Y. H. Koh, L. Li, S. Lee and H. Kim, Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol–gel method. Biomaterials, 25(13)(2004) 2533-2538.
  14. L. D. Piveteau, B.Gasser, and L. Schlapbach, Evaluating mechanical adhesion of solgel titanium dioxide coatings containing calcium phosphate for metal implant application. Biomaterials, 21(21)(2000) 2193-2201.
  15. R. Urban, J. JacobsM. TomlinsonJ. GavrilovićJ. Black and M. Péoc'h, Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. JBJS, 82(4)( 2000) 457.
  16. T. Kokubo, and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity Biomaterials, 27(15)(2006) 2907-2915.
  17. K. S. Song, S. Lee, A. Beitollahi, J. S. Choi and I. J. Yu, Introducing a new international standard ISO/TS 20660: Specification of characteristics and measurement methods for antibacterial silver nanoparticles. (2020).
  18. A. Shababdoust, M. Zandi, M. Ehsani, P. Shokrollahi and R. Foudazi, Controlled curcumin release from nanofibers based on amphiphilic-block segmented polyurethanes. International journal of pharmaceutics, 575(2020) 118947.
  19. C. S. Chien, C. W. Liu, and T. Y. Kuo, Investigation into microstructural properties of fluorapatite Nd-YAG laser clad coatings with PVA and WG binders. Surface and Coatings Technology, 205(10)( 2011) 3141-3146.
  20. C. Chien, T. J. Han, T. Hong,T. Kuo and T. Liao, Effects of different binders on microstructure and phase composition of hydroxyapatite Nd–YAG laser clad coatings. Applied Surface Science, 257(6)(2011) 2387-2393.
  21. A. El-HajjeE. C KolosJ. K. WangS. MaleksaeediZ. HeF. Edith WiriaC. Choong and A. J. Ruys, Physical and mechanical characterisation of 3D-printed porous titanium for biomedical applications. Journal of Materials Science: Materials in Medicine, 25(11)( 2014)2471-2480.
  22. L.S. Nair and C.T. Laurencin, Silver nanoparticles: synthesis and therapeutic applications, Journal of biomedical nanotechnology, 3(4)(2007) 301-316.
  23. S. Chen, G. Wu, and H. Zeng, Preparation of high antimicrobial activity thiourea chitosan–Ag+ complex. Carbohydrate Polymers, 60(1)(2005)33-38.
  24. K. Batebi, B.A. Khazaei, and A. Afshar, Characterization of sol-gel derived silver/fluor-hydroxyapatite composite coatings on titanium substrate. Surface and Coatings Technology, 352(2018) 522-528.
  25. S. Tang and J. Zheng, Antibacterial activity of silver nanoparticles: structural effects. Advanced healthcare materials, 7(13)(2018) 1701503.
  26. C. Chi-Sheng, T. Liao, T. Hong, T. Kuo, C. Chang, M. Yeh and T. Lee, Surface microstructure and bioactivity of hydroxyapatite and fluorapatite coatings deposited on Ti-6Al-4V substrates using Nd-YAG laser. J. Med. Biol. Eng, 34(2)(2014) 109-115.
  27. A. Bigham, A. Orash M. Salehi, M. Rafienia, M. R. Salamat, Sh. Rahmati, M. Raucci and L. Ambrosio, Zn-substituted Mg2SiO4 nanoparticles-incorporated PCL-silk fibroin composite scaffold: A multifunctional platform towards bone tissue regeneration. Materials Science and Engineering: C, (2021) 112242.
  28. A.A. Zadpoor, Relationship between in vitro apatite-forming ability measured using simulated body fluid and in vivo bioactivity of biomaterials. Materials Science and Engineering: C, 35(2014) 134-143.
  29. A. Jaafar, C. Hecker, P. Árki, and Y. Joseph , Sol-gel derived hydroxyapatite coatings for titanium implants: A review. Bioengineering, 7(4)(2020)127.