بررسی اثر درصد سیلیسیوم زیرلایه بر ریزساختار و ترکیب پوشش‌های اکسیداسیون الکترولیتی پلاسمایی آلیاژهای آلومینیوم- سیلیسیوم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش مهندسی مواد، دانشکده فنی و مهندسی دانشگاه شهید باهنر، کرمان، ایران

2 بخش مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه شهید باهنر، کرمان، ایران

3 دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

4 پردیس علم و فناوری دانشگاه یزد، شرکت یکتا مبدل پارس،یزد، ایران

چکیده

استفاده از روشی سازگار با محیط‌زیست به نام اکسیداسیون الکترولیتی پلاسمایی (PEO) بر آلومینیوم و آلیاژهای آن برای ایجاد درجای پوششی با خواص مطلوب بسیار موردتوجه است. از جمله پارامترهای تأثیرگذار بر روند فرایند PEO و عملکرد پوشش‌های تهیه شده، ترکیب زیرلایه است. در این تحقیق، تأثیر افزایش درصد سیلیسیوم زیرلایه بر فرایند اکسیداسیون الکترولیتی پلاسمایی با جریان پالسی دو قطبی در یک حمام الکترولیتی پایه سیلیکاتی انجام شد. نتایج نشان داد سرعت افزایش ولتاژ مثبت با افزایش مقدار سیلیسیوم درحالت جریان ثابت کاهش می‌یابد و مقادیر ولتاژ مثبت با شروع اکسیداسیون به یکدیگر نزدیک می‌شوند. از میکروسکوپ الکترونی روبشی برای ارزیابی مورفولوژی و ساختار پوشش و از آزمون تفرق اشعه ایکس، برای فازیابی استفاده شد. با افزایش درصد سیلیسیوم زیرلایه از 1 تا 13 درصد وزنی، علاوه بر کاهش ضخامت و زبری پوشش‌ها، متوسط سرعت پوشش‌دهی نیز از 1 به 43/0 میکرومتر بر دقیقه کاهش پیدا کرد. همچنین با افزایش درصد سیلیسیوم زیرلایه مورفولوژی آتشفشانی بر مورفولوژی پنکیکی در رشد پوشش غالب شده و سطحی متخلخل با حفراتی پراکنده در ساختار آن مشاهده شد. نتایج حاصل از آزمون پراش پرتو ایکس نشان داد که، پوشش‌ها عمدتاً حاوی مخلوط γ-Al2O3، η-Al2O3، δ-Al2O3، SiO2، مقدار کمی مولایت و برخی از فازهای آمورف بودند.

کلیدواژه‌ها


  1. Wang, Q., Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357. Metallurgical and materials Transactions A, 34(12)(2003)2887-2899.
  2. Dahle, A., et al., Eutectic modification and microstructure development in Al–Si Alloys. Materials Science and Engineering: A, 413(2005) 243-248.
  3. Dong, H., Surface engineering of light alloys: aluminium, magnesium and titanium alloys. International Heat Treatment and Surface Engineering, 4(2) (2010)57-57.
  4. Dai, L., et al. Anti-corrosion and wear properties of plasma electrolytic oxidation coating formed on high Si content Al alloy by sectionalized oxidation mode. in IOP Conference Series: Materials Science and Engineering. (2017), IOP Publishing.
  5. Revilla. R, et al., Role of Si in the Anodizing Behavior of Al-Si Alloys: Additive Manufactured and Cast Al-Si10-Mg. Journal of The Electrochemical Society, 165 (9)(2018)532-541.
  6. Picas. J. A., et al., HVOF thermal sprayed coatings on aluminium alloys and aluminium matrix composites. Surface & Coatings Technology, 200(2005) 1178– 1181.
  7. Raj, V. and M.M. Ali, Formation of ceramic alumina nanocomposite coatings on aluminium for enhanced corrosion resistance. Journal of Materials Processing Technology, 209(12-13)(2009) 5341-5352.
  8. Li, K., et al., Effects of Si phase refinement on the plasma electrolytic oxidation of eutectic Al-Si alloy. Journal of Alloys and Compounds, 790(2019) 650-656.
  9. Gu, W.-C., et al., Characterisation of ceramic coatings produced by plasma electrolytic oxidation of aluminum alloy. Materials Science and Engineering: A, 447(1-2)(2007)158-162.
  10. Bajat, J., et al., Corrosion stability of oxide coatings formed by plasma electrolytic oxidation of aluminum: optimization of process time. Corrosion, 69(7)(2013) 693-702.
  11. Hussein, R., et al., Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process. Journal of Physics D: Applied Physics, 43(10)( 2010) 105203.
  12. Eiliat, H., et al., Outside-Engine Wear Study of Ceramic Coated Cylinder Wall Tribo-System. SAE Technical Paper, (2014).
  13. Rodriguez, L., et al., Plasma electrolytic oxidation coatings on γTiAl alloy for potential biomedical applications. Journal of biomedical materials research. Part B, Applied biomaterials, 102(5)( 2013) 988-1001.
  14. Lara. L, Sundaram.P.A., et al., Plasma electrolytic oxidation coatings on γTiAl alloy for potential biomedical applications. Journal of Biomedical Materials research. Part B, Applied Biomaterials, 102(5)(2013) 988-1001.
  15. Barati Darband. Gh, Aliofkhazraei. M., et al., Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. Journal of Magnesium and Alloys, 5(1) (2017) 74-132.
  16. Gnedenkov, S., et al., Application of Plasma Electrolytic Oxidation for Repair of Details of Marine Technique. Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering Conference Kona, Big Island, Hawaii, USA, June 21-26(2015).
  17. Li, Y.H., Y. Zhao, and B.Y. Li. Corrosion Resistance of Al2O3-ZrO2 Composite Coating by Microarc Oxidation on 2A12 Aluminum Alloy. in Advanced Materials Research., Trans Tech Publ,( 2011).
  18. Hussein, R., et al., A study of the interactive effects of hybrid current modes on the tribological properties of a PEO (plasma electrolytic oxidation) coated AM60B Mg-alloy. Surface and Coatings Technology, 215(2013) 421-430.
  19. Jaspard-Mécuson, F., et al., Tailored aluminium oxide layers by bipolar current adjustment in the Plasma Electrolytic Oxidation (PEO) process. Surface and Coatings Technology, 201(21)(2007) 8677-8682.
  20. Matykina, E., et al., Investigation of the growth processes of coatings formed by AC plasma electrolytic oxidation of aluminium. Electrochimica acta, 54(27)(2009) 6767-6778.
  21. Li, Q., et al., Effects of cathodic voltages on structure and wear resistance of plasma electrolytic oxidation coatings formed on aluminium alloy. Applied Surface Science, 297(2014)176-181.
  22. Hussein, R., X. Nie, and D. Northwood, Influence of process parameters on electrolytic plasma discharging behaviour and aluminum oxide coating microstructure. Surface and Coatings Technology, 205(6)(2010) 1659-1667.
  23. Montazeri, M., et al., Investigation of the voltage and time effects on the formation of hydroxyapatite-containing titania prepared by plasma electrolytic oxidation on Ti–6Al–4V alloy and its corrosion behavior. Applied Surface Science, 257(16)(2011) 7268-7275.
  24. Tillous, K., et al., Microstructure and phase composition of microarc oxidation surface layers formed on aluminium and its alloys 2214-T6 and 7050-T74. Surface and Coatings Technology, 203(19)( 2009) 2969-2973.
  25. He, J., et al., Influence of silicon on growth process of plasma electrolytic oxidation coating on Al–Si alloy. Journal of alloys and compounds, 471(1-2)( 2009)395-399.
  26. Gencer, Y. and A.E. Gulec, The effect of Zn on the microarc oxidation coating behavior of synthetic Al–Zn binary alloys. Journal of alloys and compounds, 525(2012) 159-165.
  27. Tarakci, M., Plasma electrolytic oxidation coating of synthetic Al–Mg binary alloys. Materials characterization, 62(12)(2011) 1214-1221.
  28. Zhu, L., et al., Effect of the Cu content on the microstructure and corrosion behavior of PEO coatings on Al–xCu alloys. Journal of The Electrochemical Society, 165(9)( 2018)C469.
  29. Zhu, B., et al., A study of formation and growth of the anodised surface layer on cast Al-Si alloys based on different analytical techniques. Materials & design, 101(2016) 254-262.
  30. Forn, A., et al., Microstructure and tribological properties of anodic oxide layer formed on Al–Si alloy produced by semisolid processing. Surface and Coatings Technology, 202(4-7)(2007)1139-1143.
  31. Vander Voort, G.F. and J. Asensio-Lozano, The al-si phase diagram. Microscopy and Microanalysis, 15(S2)(2009)60-61.
  32. Kang, J., et al., Crystallization, sinterability, and dielectric properties of MgO–Al 2 O 3–SiO 2 glass-ceramics doped with TiO 2. Journal of Materials Science: Materials in Electronics, 31(7)(2020) 5697-5702.
  33. Hussein, R., X. Nie, and D. Northwood, An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing. Electrochimica Acta, 112(2013) 111-119.
  34. Rogov, A.B., A. Yerokhin, and A. Matthews, The role of cathodic current in plasma electrolytic oxidation of aluminum: Phenomenological concepts of the “soft sparking” mode. Langmuir, 33(41)( 2017) 11059-11069.
  35. Wang, P., et al., Ceramic coating formation on high Si containing Al alloy by PEO process. Surface Engineering, 32(6)( 2016) 428-434.
  36. Terleeva, O.P., et al., Quantitative parameters and definition of stages of anodic-cathodic microplasma processes on aluminum alloys. Materials transactions, 46(9)(2005) 2077-2082.
  37. Sah, S.P., et al., Cathodic pulse breakdown of anodic films on aluminium in alkaline silicate electrolyte–understanding the role of cathodic half-cycle in AC plasma electrolytic oxidation. Corrosion Science, 55(2012) 90-96.
  38. Tsai, D.-S. and C.-C. Chou, Review of the soft sparking issues in plasma electrolytic oxidation. Metals, 8(2)( 2018) 105.
  39. Duan, H., C. Yan, and F. Wang, Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution. Electrochimica Acta, 52(15)( 2007)5002-5009.
  40. Chang. L, Growth regularity of ceramic coating on magnesium alloy by plasma electrolytic oxidation. Journal of Alloys and Compounds, 468(2009)462–465.
  41. Clyne, T.W. and S.C. Troughton, A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals. International materials reviews, 64(3)(2019) 127-162.
  42. Shoaei-Rad, V., et al., In situ growth of ZrO2–Al2O3 nano-crystalline ceramic coatings via micro arc oxidation of aluminum substrates. Materials Research Bulletin, 47(6)( 2012) 1494-1499.
  43. Yerokhin, A., et al., Discharge characterization in plasma electrolytic oxidation of aluminium. Journal of Physics D: Applied Physics, 36(17)( 2003)2110.
  44. Cheng, Y.-l., et al., New findings on properties of plasma electrolytic oxidation coatings from study of an Al–Cu–Li alloy. Electrochimica Acta, 107(2013) 358-378.
  45. Li, X., et al., Corrosion protection properties of anodic oxide coatings on an Al–Si alloy. Surface and Coatings Technology, 200(5-6)( 2005) 1994-2000.
  46. Kumar, A.M., et al., Corrosion protection performance of single and dual Plasma Electrolytic Oxidation (PEO) coating for aerospace applications. Materials Chemistry and Physics, 149(2015)480-486.
  47. Hussein, R., D. Northwood, and X. Nie, Processing-microstructure relationships in the plasma electrolytic oxidation (PEO) coating of a magnesium alloy. Materials Sciences and Applications, (2014).
  48. Hussein, R. and D. Northwood, Improving the performance of magnesium alloys for automotive applications. WIT Transactions on the Built Environment, 137(2014) 531-544.
  49. Hussein, R., et al., The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62. Surface and Coatings Technology, 206(7)( 2011) 1990-1997.
  50. Blawert, C. and P.B. Srinivasan, Plasma electrolytic oxidation treatment of magnesium alloys, in Surface Engineering of Light Alloys. Elsevier, (2010) 155-183.
  51. Dehnavi, V., et al., Phase transformation in plasma electrolytic oxidation coatings on 6061 aluminum alloy. Surface and Coatings Technology, 251(2014) 106-114.
  52. Stojadinovic, S., et al., Characterization of the plasma electrolytic oxidation of aluminium in sodium tungstate. Corrosion Science, 52(10)(2010) 3258-3265.