مشخصه یابی کامپوزیت درجای سطحی Al-Al3Ni-TiC حاصل از فرایند FSP با استفاده از پودر فعال سازی مکانیکی شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مواد، دانشکده مهندسی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 دانش آموخته دکترای مهندسی مواد، گروه مهندسی مواد، دانشکده مهندسی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

در این پژوهش کامپوزیت درجای سطحی TiC-Al- Al3Ni به روش فرایند اصطکاکی اغتشاشی با استفاده از پودر فعال 20 ساعت آلیاژسازی مکانیکی شده با موفقیت ساخته شد. ریزساختار، سختی و رفتار سایشی کامپوزیت‌های حاصل پس از 2 و 6 پاس فرایند اصطکاکی اغتشاشی مورد ارزیابی قرار گرفت. ریزساختار پودر آلیاژسازی مکانیکی شده و کامپوزیت حاصل از فرایند اصطکاکی اغتشاشی با استفاده از میکروسکوپ‌های نوری، الکترونی روبشی انتشار میدانی (FESEM) مجهز به طیف‌سنج انرژی (EDS) بررسی شد. یافته‌های آزمایش نشان داد در حین فرایند اصطکاکی اغتشاشی در فصل مشترک پودر آلیاژسازی مکانیکی شده و آلومینیم زمینه واکنش درجا اتفاق افتاده و منجر به تشکیل و توزیع ترکیبات Al3Ni و TiC در حین فرایند اصطکاکی اغتشاشی در زمینه می‌شود. ترکیبات Al3Ni و TiC منجر به افزایش سختی و بهبود مقاومت سایشی کامپوزیت‌های درجا شد. سختی در کامپوزیت حاصل از 6 پاس فرایند اصطکاکی اغتشاشی (HV 70) نسبت به فلز پایه (HV 25 ≈) حدود 280% افزایش یافت و کامپوزیت حاصل از 2 پاس به‌دلیل واکنش ناقص و توزیع غیر همگن ذرات پودر سختی غیر یکنواخت نشان داد. مکانیزم‌های سایش چسبان و خراشان برای فلز پایه و کامپوزیت حاصل از 2 پاس فرایند اصطکاکی اغتشاشی و مکانیزم خراشان برای کامپوزیت‌های درجای حاصل از 6 پاس فرایند اصطکاکی اغتشاشی به‌عنوان مکانیزم‌های غالب تشخیص داده شد.

کلیدواژه‌ها


1.V. Sharma, U. Prakash, B.V.M. Kumar, Surface composites by friction stir processing: A review, Journal of Materials Processing Technology, 224 (2015) 117-134.
2. C.M. Rejil, I. Dinaharan, S.J. Vijay, N. Murugan, Microstructure and sliding wear behavior of AA6360/(TiC + B4C) hybrid surface composite layer synthesized by friction stir processing on aluminum substrate, Materials Science and Engineering A 552(2012) 336-344.
3. A. Shafiei-Zarghani, S.F. Kashani-Bozorg, A. Zarei-Hanzaki, Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing, Materials Science and Engineering A500 (2009) 84–91.
4. Qu. Jun, Xu. Hanbing, Z. Feng, D. Alan Frederick, L. An, H. Heinrich, Improving the tribological characteristics of aluminum 6061 alloy by surface compositing with sub-micro-size ceramic particles via friction stir processing, Wear 271 (2011) 1940–1945.
5. S.A. Hossieni, K. Ranjbar, R. Dehmolaei, A.R. Amirani, Fabrication of Al5083 surface composites reinforced by CNTs and cerium oxide nano particles via friction stir processing, Journal of Alloys and Compounds, 622 (2015) 725–733.
6. M. Balakrishnan, I. Dinaharan, R. Palanivel, R. Sathiskumar, Influence of friction stir processing on microstructure and tensile behavior of AA6061/Al3Zr cast aluminum matrix composites, Journal of Manufacturing Processes 38 (2019) 148–157.
7. M. Rahsepar, H. Jarahimoghadam, The influence of multipass friction stir processing on the corrosion behavior and mechanical properties of zircon-reinforced Al metal matrix composites, Materials Science and Engineering A 671(2016) 214-220.
8. R. Palanivel, I. Dina haran, R.F. Laubscher, J.Paulo Davim, Influence of boron nitride nanoparticles on microstructure and wear behavior of AA6082/TiB2 hybrid aluminum composites synthesized by friction stir processing, Materials & Design, 106(2016) 195-204.
9. L. Ke, Ch. Huang, L. Xing, K. Huang, Al–Ni intermetallic composites produced in situ by friction stir processing, Journal of Alloys and Compounds, 503(2) (2010) 494-499.
10. Q. Zhang, B.L. Xiao, D. Wang, Z.Y. Ma, Formation mechanism of in situ Al3Ti in Al matrix during hot pressing and subsequent friction stir processing, Materials Chemistry and Physics, 130(3) (2011) 1109-1117.
11. M. Rahsepar, H. Jarahimoghadam, Aluminum based in situ nanocomposite produced from Al–Mg–CuO powder mixture by using friction stir processing, Materials Letters 100(2013) 219-222.
12. G.L. You, N.J. Ho, P.W. Kao, The microstructure and mechanical properties of an Al–CuO in-situ composite produced using friction stir processing, Materials Letters, 90 (2013) 26-29.
13. G.L. You, N.J. Ho, P.W. Kao, In-situ formation of Al2O3 nanoparticles during friction stir processing of AlSiO2 composite, Materials Characterization, 80(2013) 1-8.
14. R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Materials Science and Engineering, R 50(1–2) (2005) 1-78.
15. C.C. Koch, J.D. Whittenberger, Mechanical milling/alloying of intermetallics, Intermetallics, 4(5) (1996) 339-355.
16. F.A. Mehraban, F. Karimzadeh, M.H. Abbasi, Development of surface nanocomposite based on Al-Ni-O ternary system on Al6061 alloy by friction-stirprocessing and evaluation of its properties, JOM, 67 (2015) 998-1006.
17. H.B. Michael Rajan, I. Dinaharan, S. Ramabalan, E.T. Akinlabi, Influence of friction stir processing on microstructure and properties of AA7075/TiB2 in situ composite, Journal of Alloys and Compounds 657 (2016) 250-260.
18. G. Platzki, Therrnochernical Data of Pure Substances, Third Edition, 1995.
19. H. Fotoohi, B. Lotfi, Z. Sadeghian, J. Byeon, Microstructural characterization and properties of in situ Al-Al3Ni/TiC hybrid composite fabricated by friction stir processing using reactive powder, Materials Characterization 149 (2019) 124–132.
20. Y. Uematsu, K. Tokaji, H. Shibata, Y. Tozaki, T. Ohmune, Fatigue behaviour of friction stir welds without neither welding flash nor flaw in several aluminium alloys, International Journal of Fatigue, 31(10) (2009) 1443-1453.
21. J. Qian, Li. Jinglong, , J. Xiong, F. Zhang, X. Lin, In situ synthesizing Al3Ni for fabrication of intermetallic-reinforced aluminum alloy composites by friction stir processing, Materials Science and Engineering, A550(2012) 279-285.
22. I. Dinaharan, R. Nelson, S.J. Vijay, E.T. Akinlabi, Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing, Materials Characterization, 118 (2016) 149–158.
23. H.S. Arora, H. Singh, B.K. Dhindaw, Wear behaviour of a Mg alloy subjected to friction stir processing, Wear, 303 (2013) 65–77.
24. C.N. Shyam Kumar, Ranjit Bauri, Devinder Yadav, Wear properties of 5083 Al–W surface composite fabricated by friction stir processing, Tribology International, 101 (2016) 284–290.
25. B.R. Akshay, R Keshavamurthy, P. Kuppahalli, M. Sudhan, Mechanical Properties of Friction Stir Processed Al6061-BN Surface Composite, Proceedings, 5 (2018) 24568–24577.
26. I.S. Lee, C.J. Hsu, C.F. Chen, N.J. Ho, P.W. Kao, Particle-reinforced aluminum matrix composites produced from powder mixtures via friction stir processing, Composites Science and Technology, 71 (2011) 693–698.
27. I. Dinaharan, S. Saravanakumar, K. Kalaiselvan, S. Gopalakrishnan, Microstructure and sliding wearcharacterization of Cu/TiB2coppermatrix composites fabricatedvia friction stir processin, Journal of Asian Ceramic Societies, 5 (2017) 295–303.
28. S. Mirjavadi, M. Alipour, A. Hamouda, A. Matin, S. Kord, B. Afshari, P.G. Koppad, Effect of multi-pass friction stir processing on the microstructure, mechanical and wear properties of AA5083/ZrO2 nanocomposites, Journal of Alloys and Compounds, 726 (2017) 1262-1273.
29. A.Y. Mosbah, D. Wexler and A. Calka, Abrasive wear of WC–FeAl composites, Wear, 258 (2005), 1337–1341.