مشخصه‌یابی لایه‌های نازک Cu2ZnSnS4 ایجاد شده به روش رسوب فیزیکی بخار تبخیر آنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشگاه صنعتی ارومیه

2 گروه مهندسی مواد، دانشگاه صنعتی ارومیه

چکیده

در این پژوهش لایه‌های نازک نیمه‌رسانای Cu2ZnSnS4 توسط رسوب لایه‌های آلیاژی مس-روی-قلع روی زیرلایه شیشه‌ به روش رسوب فیزیکی بخار تبخیر آنی و سپس آنیل لایه‌ها در اتمسفر حاوی گوگرد ساخته شدند. تاثیر پارامترهای فرآیند بر ترکیب شیمیایی، ساختار، مورفولوژی و جذب نوری لایه‌های نازک ساخته شده پیش و پس از عملیات حرارتی گوگرددهی با استفاده از پراش پرتو ایکس، طیف‌سنجی رامان، میکروسکوپ الکترونی روبشی و طیف-سنجی فرابنفش-مرئی مطالعه شد. یافته‌های پراش پرتو ایکس و طیف‌سنجی رامان نشان داد CZTS کستریت فاز غالب در لایه‌های نازک آنیل شده است. با این وجود نتایج طیف‌سنجی فرابنفش-مرئی حاکی از آن است که فازهای ثانویه موجود بر رفتار نوری لایه‌های نازک موثر است. ایجاد خواص بهینه در لایه-های نازک CZTS نیازمند انتخاب صحیح متغیرهایی مانند ترکیب پودر اولیه PVD، مقدار گوگرد، دما و زمان گوگرددهی است. به دلیل پیچیدگی نحوه تاثیر این متغیرها بر ساختار و خواص لایه‌های نازک از روش طراحی آزمایش تاگوچی برای تعیین میزان اهمیت هر متغیر و نیز انتخاب بهترین ترکیب از متغیرهای فرآیند برای ایجاد گاف انرژی بهینه در لایه‌های نازک CZTS استفاده شد. نمونه ساخته شده بر اساس پارامترهای پیشنهادی روش تاگوچی کمترین مقدار گاف انرژی، eV 1/56، را نشان داد.

کلیدواژه‌ها


1. A. Emrani, P. Vasekar, C.R. Westgate, Effects of sulfurization temperature on CZTS thin film solar cell performances, Solar Energy, 98 (2013) 335-340.
2. C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, A. Pu, M. He, F. Liu, K.J.N.E. Eder, Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment, Nature Energy, 3 (2018) 764-772.
3. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar Cell Efficiency Tables (Version 45), Progress in Photovoltaics, 23 (2015) 1-9.
4. M. Powalla, P. Jackson, D. Hariskos, S. Paetel, W. Witte, R. Würz, E. Lotter, R. Menner, W. Wischmann, CIGS thin-film solar cells with an improved efficiency of 20.8%, in: 29th European Photovoltaic Solar Energy Conference, (2014).
5. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin film solar cells with 12.6% efficiency, Advanced Energy Materials, 4 (2014) 1301465.
6. W. Ki, H.W. Hillhouse, Earth-Abundant Element Photovoltaics Directly from Soluble Precursors with High Yield Using a Non-Toxic Solvent, Advanced Energy Materials, 1 (2011) 732-735.
7. K. Pal, P. Singh, A. Bhaduri, K. B. Thapa, Current challenges and future prospects for a highly efficient (> 20%) kesterite CZTS solar cell: A review, Solar Energy Materials and Solar Cells, 196 (2019) 138–156.
8.S. Giraldo, Z. Jehl, M. Placidi, V. Izquierdo-Roca, A. Pérez-Rodríguez, E. Saucedo, Progress and Perspectives of Thin Film Kesterite Photovoltaic Technology: A Critical Review, Advanced Materials, 31 (2019) 1806692.
9.K. C. Nwambaekwe, V. SuruJohn-Denk, S. F. Douman, P. Mathumba, S. T. Yussuf, O. V. Uhuo, P. I. Ekwere, E. I. Iwuoha, Crystal engineering and thin-film deposition strategies towards improving the performance of kesterite photovoltaic cell, Journal of Materials Research and Technology, 12 (2021) 1252-1287.
10. A. Redinger, D.M. Berg, P.J. Dale, R. Djemour, L. Gütay, T. Eisenbarth, N. Valle, S. Siebentritt, Route Toward High-Efficiency Single-Phase Cu2ZnSn(S,Se)4 Thin-Film Solar Cells: Model Experiments and Literature Review, IEEE Journal of Photovoltaics, 1 (2011) 200-206.
11. J. Han, S.W. Shin, M.G. Gang, J.H. Kim, J.Y. Lee, Crystallization behaviour of co-sputtered Cu2ZnSnS4 precursor prepared by sequential sulfurization processes, Nanotechnology, 24 (2013) 095706.
12. A. Santoni, F. Biccari, C. Malerba, M. Valentini, R. Chierchia, A. Mittiga, Valence band offset at the CdS/Cu2ZnSnS4 interface probed by x-ray photoelectron spectroscopy, Journal of Physics D: Applied Physics, 46 (2013) 175101.
13. J. Seol, S. Lee, J. Lee, H. Nam, K. Kim, Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process, Solar Energy Materials and Solar Cells, 75 (2003) 155-162.
14. B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber, Progress in Photovoltaics: Research and Applications, 21 (2011) 72-76.
15. F. Jiang, S. Ikeda, T. Harada, M. Matsumura, Pure Sulfide Cu2ZnSnS4Thin Film Solar Cells Fabricated by Preheating an Electrodeposited Metallic Stack, Advanced Energy Materials, 4 (2013).
16. A.A. Rockett, Current status and opportunities in chalcopyrite solar cells, Current Opinion in Solid State and Materials Science, 14 (2010) 143-148.
17. K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W.S. Maw, H. Araki, K. Oishi, H. Katagiri, Cu2ZnSnS4-type thin film solar cells using abundant materials, Thin Solid Films, 515 (2007) 5997-5999.
18. H. Araki, Y. Kubo, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, A. Takeuchi, Preparation of Cu2ZnSnS4thin films by sulfurization of co-electroplated Cu-Zn-Sn precursors, physica status solidi (c), 6 (2009) 1266-1268.
19. H. Okamoto, M. E. Schlesinger, E. M. Mueller, ASM handbook. Volume 3, Alloy phase diagrams, ASM International, (2016).
20. M. Himmrich, H. Haeuseler, Far infrared studies on stannite and wurtzstannite type compounds, Spectrochimica Acta Part A: Molecular Spectroscopy, 47 (1991) 933-942.
21. F. Jiang, H. Shen, C. Gao, B. Liu, L. Lin, Z. Shen, Preparation and properties of SnS film grown by two-stage process, Applied Surface Science, 257 (2011) 4901-4905.
22. S. Kahraman, S. Çetinkaya, M. Podlogar, S. Bernik, H.A. Çetinkara, H.S. Güder, Effects of the sulfurization temperature on sol gel-processed Cu2ZnSnS4 thin films, Ceramics International, 39 (2013) 9285-9292.
23. F. Liu, Y. Li, K. Zhang, B. Wang, C. Yan, Y. Lai, Z. Zhang, J. Li, Y.J.S.E.M. Liu, S. Cells, In situ growth of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering, 94 (2010) 2431-2434.
24. E.V. Rusu, N.N. Syrbu, A.V. Tiron, V.V. Zalamai, Band structure and optical constants of SnS2 single crystals, Materials Research Express, 6 (2019) 046203.
25. M. Patel, I. Mukhopadhyay, A. Ray, Structural, optical and electrical properties of spray-deposited CZTS thin films under a non-equilibrium growth condition, Journal of Physics D: Applied Physics, 45 (2012) 445103.
26. K. Moriya, J. Watabe, K. Tanaka, H. Uchiki, Characterization of Cu2ZnSnS4 thin films prepared by photo-chemical deposition, physica status solidi C, 3 (2006) 2848-2852.
27. V. Kheraj, K. Patel, S. Patel, D.J.J.o.C.G. Shah, Synthesis and characterisation of Copper Zinc Tin Sulphide (CZTS) compound for absorber material in solar-cells, Journal of Crystal Growth, 362 (2013) 174-177.
28. H. Yoo, J. Kim, L. Zhang, Sulfurization temperature effects on the growth of Cu2ZnSnS4 thin film, Current Applied Physics, 12 (2012) 1052-1057, 29. K. Sekiguchi, K. Tanaka, K. Moriya, H. Uchiki, Epitaxial growth of Cu2ZnSnS4 thin films by pulsed laser deposition, physica status solidi C, 3 (2006) 2618-2621.
30. P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, B.-A. Schubert, Cu2ZnSnS4 solar cells prepared with sulphurized dc-sputtered stacked metallic precursors, Thin Solid Films, 519 (2010) 7382-7385.
31. H. Du, F. Yan, M. Young, B.To, C. Jiang, P. Dippo, D. Kuciauskas, Z. Chi, E.A. Lund, C. Hancock, W.M. Hlaing Oo, M.A. Scarpulla, and G. Teeter, Investigation of combinatorial coevaporated thin film Cu2ZnSnS4, (I): Temperature effect, crystalline phases, morphology, and photoluminescence, Journal of Applied Physics, 115 (2014) 173502.
32. E.A. Lund, H. Du, W.M. Hlaing Oo, G. Teeter, M.A. Scarpulla, Investigation of combinatorial coevaporated thin film Cu2ZnSnS4 (II): Beneficial cation arrangement in Cu-rich growth, Journal of Applied Physics, 115 (2014) 173503.
33. B. Unveroglu, G. Zangari, Towards phase pure kesterite CZTS films via Cu-Zn-Sn electrodeposition followed by sulfurization, Electrochimica Acta, 219 (2016) 664-672.
34. V.V. Brus, I.S. Babichuk, I.G. Orletskyi, P.D. Maryanchuk, V.O. Yukhymchuk, V.M. Dzhagan, I.B. Yanchuk, M.M. Solovan and I.V. Babichuk, Raman spectroscopy of Cu-Sn-S ternary compound thin films prepared by the low-cost spray-pyrolysis technique, Applied Optics, 55 (2016) B158.
35. J. Wang, S. Li, J. Cai, B. Shen, Y. Ren, G. Qin, Cu2ZnSnS4 thin films: Facile and cost-effective preparation by RF-magnetron sputtering and texture control, Journal of Alloys and Compounds, 552 (2013) 418–422.
36. N.P. Huse, A.S. Dive, S.V. Mahajan, R. Sharma, Facile, one step synthesis of non-toxic kesterite Cu2ZnSnS4 Nanoflakes thin film by chemical bath deposition for solar cell application, Journal of Materials Science: Materials in Electronics, 29 (2018) 5649–5658.
37. N. Ghobadi, Band gap determination using absorption spectrum fitting procedure, International Nano Letters, 3 (2013) 2.
38. P. A. Fernandes, P.M.P. Salomé and A.F. da Cunha, CuxSnSx+1 (x = 2, 3) thin films grown by sulfurization of metallic precursors deposited by dc magnetron sputtering, Phys. Status Solidi C, 7 (2010) 901– 904.
39. K. Maeda, K. Tanaka, Y. Nakano and H. Uchiki, Annealing Temperature Dependence of Properties of Cu2ZnSnS4 Thin Films Prepared by Sol–Gel Sulfurization Method, Japanese Journal of Applied Physics 50 (2011) 05FB08.
40. Y.B.K. Kumar, P.U. Bhaskar, G.S. Babu and V.S. Raja, Effect of copper salt and thiourea concentrations on the formation of Cu2ZnSnS4 thin films by spray pyrolysis, Phys. Status Solidi A, 207 (2010) 149– 157.
41. M.N. Solovan, A.I. Mostovoi, S.V. Bilichuk, F. Pinna, T.T. Kovalyuk, V.V. Brus, E.V. Maistruk, I.G. Orletskii, and P.D. Maryanchuk, Structural and Optical Properties of Cu2ZnSn(S,Se)4 Films Obtained by Magnetron Sputtering of a Cu2ZnSn Alloy Target, Physics of the Solid State, 59 (2017) 1643–1647.
42. V.R.M. Reddy, M.R. Pallavolu, P.R. Guddeti, S. Gedi, K.K.Y.B. Reddy, B. Pejjai, W.K. Kim, T.R.R. Kotte, C. Park, Review on Cu2SnS3, Cu3SnS4, and Cu4SnS4 thin films and their photovoltaic performance, Journal of Industrial and Engineering Chemistry 76 (2019) 39-74.
43. A.A. Sagade and R. Sharma, Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature, Sensors and Actuators B, 133 (2008) 135–143.
44. I. Grozdanov, M. Najdoski, Optical and electrical properties of copper sulfide films of variable compositions, Journal of Solid State Chemistry, 114 (1995) 469–475.
45. L.A. Burton, D. Colombara, R.D. Abellon, F.C. Grozema, L.M. Peter, T.J. Savenije, G. Dennler and A. Walsh, Synthesis, Characterization, and Electronic Structure of Single-Crystal SnS, Sn2S3, and SnS2, Chemistry of Materials 25 (2013) 4908−4916.
46. D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, Inc., (2006).
47. S. Chen, X.G. Gong, A. Walsh, S.-H. Wei, Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights, Applied Physics Letters, 94 (2009) 041903.
48. L.-J. Chen, Y.-J. Chuang, Quaternary semiconductor derived and formation mechanism by non-vacuum route from solvothermal nanostructures for high-performance application, Materials Letters, 91 (2013) 372-375.
49. A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kötschau, H.W. Schock, R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze, A. Kirbs, Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective, Thin Solid Films, 517 (2009) 2511-2514.
50. H. Park, Y.H. Hwang, B.-S. Bae, Sol–gel processed Cu2ZnSnS4 thin films for a photovoltaic absorber layer without sulfurization, Journal of Sol-Gel Science and Technology, 65 (2012) 23-27.