بررسی اثر زمان فرایند بر خواص پوشش های نانوساختار آلومینا- زیرکونیای اعمال شده بر آلومینیوم 7075 به روش اکسیداسیون پلاسمای الکترولیتی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران

2 دانشکده مهندسی و علم مواد، دانشگاه تگزاس، آرلینگتون

3 دانشکده مهندسی و علم مواد، دانشگاه صنعتی شریف

چکیده

در این پژوهش به منظور بهبود خواص مکانیکی زیرلایه های آلومینیوم ۷۰۷۵، پوشش های نانوساختار آلومینا- زیرکونیا با روش اکسیداسیون پلاسمای الکترولیتی در حالت ولتاژ ثابت بر سطح آنها اعمال شدند. پوشش های مذکور در ولتاژ 450 ولت و در زمان های 300-100 ثانیه در الکترولیت پایدار حاوی K2ZrF6 آماده شدند. بررسی فازی نمونه ها بیانگر تشکیل کامپوزیت های آلومینا- زیرکونیا با ترکیب فازهای زیرکونیای تتراگونال و آلومینای آلفا و گاما در زمان های پوشش دهی 200 ثانیه و بالاتر است. بررسی ریزساختاری توسط میکروسکوپ الکترونی روبشی تشکیل پوشش های نانوساختار با اندازه ذرات 40-20 نانومتر با ساختار متخلخل و افزایش سایز تخلخل ها با افزایش زمان پوشش دهی را نشان می دهد. با توجه به نتایج میکروسکوپی در سطح مقطع پوشش، ضخامت پوشش ها در محدوده 19-12 میکرومتر می باشد. آنالیز شیمیایی در سطح مقطع پوشش بیانگر توزیع یکنواخت عناصر Al، Zr و O در عرض پوشش است. سختی سنجی ویکرز نمونه ها، افزایش 10 برابری سختی زیرلایه های آلومینیومی با اعمال این پوشش ها را نشان می دهد.

کلیدواژه‌ها


[1] L. Wang, K. Zhang, H. He, W. Sun, Q. Zong, G. Liu, L. Wang, Surface & Coatings Technology 235 (2013) 484–488.

[2] L. Rama Krishna, K.R.C. Somaraju, G. Sundararajan, Surface and Coatings Technology 163–164 (2003) 484–490.

[3] M.H. Staia, E.S. Puchi Cabrera, A. Iost, A. Zairi, S. Belayer, A. Van Gorp, Tribological response of AA 2024-T3 aluminium alloy coated with a DLC duplex coating, Tribology International, 85, 2015, 74-87.

[4] L. D. Hart, E. Lense, Alumina Chemicals: Science and Technology Handbook,  2006, Wiley.

[5] S.M. Naga, S.H. Kenawy, M. Awaad, E. Roos, A. Lyutovich, H. Ruoff, R. Krisch, Ceramics International 37 (2011) 771–777.

[6] H. Hadrabaa, D. Drdlikb, Z. Chlupa, K. Macab, I. Dlouhya, J. Cihlar, the European Ceramic Society, 32 (2012) 2053–2056.

[7] Yongting Zheng, Hongbo Li, Tao Zhou, Applied Surface Science 258 (2011) 1531–1534.

[8] S.M. Naga, S.H. Kenawy, M. Awaad, E. Roos, A. Lyutovich, H. Ruoff, R. Krisch, Combined zirconia toughened alumina (ZTA) stacks obtained by electron beam physical vapour deposition, Ceramics International 37 (2011) 771–777.

[9] M. Aliofkhazraei, A. Sabour Rouhaghdam, T. Shahrabi, Abrasive wear behaviour of Si3N4/TiO2 nanocomposite coatings fabricated by plasma electrolytic oxidation, Surface & Coatings Technology, 25 (2010) 41-46.

[10] A.L. Yerokhin, L.O. Snizhko, N.L. Gurevina, A. Leyland, A. Plikington, A. Matthews, Surf. Coat. Tech. 177–178 (2004) 779.

[11] Alicja Kazek-Kęsik, Małgorzata Krok-Borkowicz, Elżbieta Pamuła, Wojciech Simka, Electrochemical and biological characterization of coatings formed on Ti–15Mo alloy by plasma electrolytic oxidation,  Materials Science and Engineering: C, 43, 2014, 172-181.

[12] Yingliang Cheng, Jinhui Cao, Zhaomei Peng, Qun Wang, E. Matykina, P. Skeldon, G.E. Thompson, Wear-resistant coatings formed on Zircaloy-2 by plasma electrolytic oxidation in sodium aluminate electrolytes, Electrochimica Acta, 116, 2014, 453-466.

[13] Sandhyarani M, Prasadrao T, Rameshbabu N,Role of electrolyte composition on structural, morphological and in-vitro biological properties of plasma electrolytic oxidation films formed on

zirconium, Applied Surface Science, 317, 2014, 198-209.

[14] Danuta Krupa, Jacek Baszkiewicz, Joanna Zdunek, Jerzy Smolik, Zbigniew Słomka, Janusz W. Sobczak, Characterization of the surface layers formed on titanium by plasma electrolytic oxidation, Surface and Coatings Technology, 205, 2010, 1743-1749.

[15] Jie Wu, Yifan Zhang, Run Liu, Bin Wang, Ming Hua, Wenbin XueWu, Anti-corrosion layer prepared by plasma electrolytic carbonitriding on pure aluminum, Applied Surface Science, 347, 2015, 673-678.

[16] M. Tang, W. Li, H. Liu, L. Zhu, Applied Surface Science 258 (2012) 5869-5875.

[17] V. Shoaei-Rad, M.R. Bayati, F. Golestani-Fard, H.R. Zargar, J. Javadpour, Fabrication of ZrO2–Al2O3 hybrid nano-porous layers through micro arc oxidation process, Materials Letters 65 (2011) 1835–1838.

[18] V. Shoaei-Rad, M.R. Bayati, H.R. Zargar, J. Javadpour, F. Golestani-Fard, In situ growth of ZrO2–Al2O3 nano-crystalline ceramic coatings via micro arc oxidation of aluminum substrates, Materials Research Bulletin, 47 (2012) 1494-1499.