بررسی رفتار الکتروشیمیایی و مورفولوژیکی فولاد 34CrNiMo6 پوشش داده

شده به روش PACVD

یاسر مهدوی نفتچالی، بهروز قاسمی، فتح الله قدس

دانشکده مهندسی مواد و متالورژی، دانشگاه سمنان

(دریافت مقاله: ۱۴۰۲/۷/۲۷ – یذیرش مقاله: ۱۴۰۲/۱۱/۲۵)

چکیدہ

با اعمال پارامترهای مناسب در فرآیندهای پوشش دهی به روش رسوب شیمیایی متاثر از پلاسما، PACVD ، می توان عملکرد فولاد های کم آلیاژ را در برابر عوامل سطحی تحت تاثیر قرار داده و بهبود بخشید. در این تحقیق آلیاژ زیر لایه فولاد کم آلیاژ BACRIMO6 و دواص سطحی آن، فرایند پوشش دهی به روش PACVD و PACVD و CH4 م TiCl3 و N. C. N. C به همراه وارد کردن Fe به ترکیب پوششها، در طول فرایند پوشش دهی انجام شده است. بررسی های ریزساختاری و ترکیب شیمیایی توسط پراش پرتو ایکس (GIXRD) ، میکروسکوپ الکترونی روبشی گسیل میدانی، FESEM ، و طیف سنجی پراکندگی انرژی (EDS) و زیری سطح پوششها ایکس (GIXRD) ، میکروسکوپ نیروی اتمی AFM مشخص شده اند. برای بررسی خواص الکتروشیمیایی نمونه ها از محلول ۵٫۵ در معل استفاده کرده و آزمون های پلاریزاسیون پتانسیودینامیکی و طیف سنجی ایرانس (EIS) نمونه ها از محلول ۳٫۵ می در ایرا مال استفاده کرده و آزمون های پلاریزاسیون پتانسیودینامیکی و طیف سنجی امپدانس (EIS) نمونه ها از محلول ۵٫۵ می در معلی پوشش ها بیشتر گاز APH ، میزان کندوپاش مربوط به Fe بیشتر شده و مقدار آن در سطح مربوط به پوششها افزایش یافته است و نیز کیفیت سطحی پوشش ها تحت تاثیر قرار گرفته و بهبود یافته است. همچنین از نتایج بر می آید که تشکیل فازهای نیتریدی و ACV می در و میزان نیتروژن سطح پوشش ها معامل تعیین کننده مقاومت پوششها در مقابل خوردگی قلمداد می شود.

واژه های کلیدی : فولاد 34CrNiMo6 ، مورفولوژی ، بررسی های الکتروشیمیایی ، پوشش

The investigation of morphological and electrochemical behavior of 34CrNiMo6 steel coated by PACVD method

Abstract:

By applying the appropriate parameters in the PACVD process, It is possible to influence and improve the performance of lowalloy steels against surface factors. In this study, low-alloy steel substrate, 34CrNiMo6 is used in order to create microstructural changes and improve its surface properties, the coating process by method PACVD Contains vapors of TiCl4, CH4 and N2 in order to apply Ti, C, N along with adding Fe to the composition of the coatings by this process. Investigations of microstructure and chemical composition by X-ray diffraction, Field emission scanning electron microscopy and energy dispersive spectroscopy (EDS) have been characterized to check the electrochemical properties of the samples, a 3.5% wt NaCl solution was used, and potential dynamic polarization and impedance spectroscopy (EIS) tests were performed on the samples. The results of the research show that by applying more CH4 gas, the sputter rate of Fe increased and its amount was increased at the surface of the coatings, and the surface of the coatings has been improved. Also, it can be seen that the formation of C3N4 phase and the amount of nitrogen on the surface of the coatings are considered to be the determining factors of the corrosion resistance of the coatings.

Keywords: 34CrNiMo6 steel, Morphology, electrochemical properties, coating.

E-mail of Corresponding author : bghasemi@semnan.ac.ir

۱– مقدمه

زندگی بشر، پیشرفت و توسعه آن از گذشته های دور تا کنون به شکل خاصی وابسته به فلزات و عناصر شکل پذیر و با استحکام بالا جهت ساخت ابزار آلات مهندسی و ماشین آلات با فناوری های مدرن بوده است. فلزات شکل پذیر و با استحکام بالا مانند آلیاژهای مس، آلومینیم، منیزیم و فولادها در توسعه ی این امر به عنوان عناصر کلیدی تاکنون نقش آفرینی کرده اند. اما در این میان، فولادها به عنوان اصلی ترین عنصر و در محور مرکزی این پیشرفت ها قرار داشته و توسعه آنها همچنان در حال پیشرفت است. در گرو خدماتي كه فولادها بواسطه خواص خود ارائه مي دهند، وجود برخی از محدودیت ها امری اجتناب ناپذیر است. به عنوان مثال زماني كه يك فولاد خواص خستكي مناسبي ارائه می دهد، ممکن است مقاومت در برابر خوردگی ضعیفی داشته باشد. آلیاژ سازی، می تواند یکی از راه حل های موثر جهت رفع برخی از این محدودیت ها و اصلاح خواص آن باشد، اما به دو دلیل غیر منطقی بنظر می آید: I) آلیاژ سازی ممکن است خواص دیگر آن مانند خواص خستگی را کاهش دهد، II) هزینه های زیاد و غیر مقرون بصرفه که سبب محدودیت استفاده آن برای صنعتگران و مهندسان می شود. بنابراین در چنین مواردی رویکرد مناسب و متعارف جهت تقويت اين فولادها استفاده از عمليات سطحي و اعمال لایه ها یا پوشش های سطحی مناسب و مقرون بصرفه می باشد. نیتراسیون و اعمال پوشش های نیتریدی با ویژگی های خاص خود نظیر افزایش سختی و مقاومت به سایش سطح همراه باكاهش احتمال پوسته شدن امروزه بيشتر مدنظر محققان و صنعتگران می باشند و پتانسیل بسیار خوبی در روش های پردازش و اعمال آن ها وجود دارد [۱]. از جمله پوششهای نیتریدی می توان به پوششهای حاوی تیتانیوم

که دارا ی خواص مکانیکی قابل قبول و ظاهری زیبا می باشند اشاره کرد [۶-۲]. همچنین وجود کربن می تواند منجر به ایجاد خواص متنوع و بهبود خواص تریبولوژیکی فولاد گردد [۷]. تکنیک ها و روش های متنوعی برای رسوب دهی بر روی سطوح قطعات فولادی وجود دارند که استفاده از هرکدام به نوبه خود منجر به ایجاد خواص منحصر به فرد می گردد. اما استفاده از فرآیند رسوب دهی شیمیایی از فاز بخار و روش کامل تر آن که در محیط پلاسما انجام می شود یعنی PACVD بنا به دلایلی نظیر قابلیت ایجاد پوشش های ایجاد کندوپاش جهت رسیدن به فاز یا فازهای موردنظر و ایجاد چسبندگی بهتر پوشش با زیرلایه نسبت به فرآیندهایی نظیر CVD و PVD ترجیح داده می شود [۸ و ۹].

فولاد 34CrNiMo6 از نوع فولادهای کم آلیاژ بوده که امروزه کاربردهایی در ساخت قطعات مهندسی عمومی مانند چرخ دنده ها و ساخت قطعات انتقال نیرو مانند شفت ها دارد [۱۰-۱۲]. علیرغم خواص خوبی نظیر استحکام بالا و انعطاف پذیری خوب که فولاد مذکور دارد به منظور گستردگی کاربرد فولاد در مواجه با محیط های خورنده آبی و افزایش کارایی آن ، نیاز است پوششهایی با خواص مناسب در برابر خوردگی همراه با چسبندگی مناسب به سطح زیرلایه استفاده شود. همچنین به منظور افزایش سطح زیرلایه استفاده شود. همچنین به منظور افزایش پلاسمایی (PN) قبل از اعمال پوشش اصلی، می تواند یک حمایت کننده بسیار خوب از پوششها تلقی شود [۱۰و ۱۴].

در این تحقیق از فولاد 34CrNiMo6 (DIN 1.6582) جهت انجام مطالعات استفاده شده است. با توجه به آنکه تا کنون هیچ تحقیقی در رابطه با بهبود رفتار خوردگی فولاد

34CrNiMo6 با استفاده از فرایند پوشش دهی و به روش PACVD صورت نگرفته است بدین منظور نمونههای پوشش داده شده به همراه نمونهی PN تنها، مورد مطالعه قرار گرفتند. به منظور ایجاد پوشش با خواص تریبولوژیکی

مناسب ، بسترهایی حاوی N ،C ،Ti و Fe که Fe از طریق عمل کندوپاش تأمین می شود) با استفاده از جریان های متفاوت گاز متان فراهم گشته و به روش PACVD اعمال شد.

پوششدهی ، ابتدا نمونهها بعد از پرداخت سطحی شامل

سمباده زنی و پولیش کاری، توسط اسید کلریدریک ۳۳٪

اسیدشویی شده تا اکسیدهای موجود برروی سطوح نمونهها

۲- روند انجام آزمایش ها

DIN) 34CrNiMo6 (ین تحقیق، نمونه فولادی 34CrNiMo6 (یزد) جهت (این تحقیق تولید کارخانه فولاد آلیاژی ایران (یزد) جهت بررسی و تحقیق انتخاب شد و نمونه ها به قطر ۲۰ و ۵۰ میلیمتر و به ضخامت ۱۰ میلیمتر برش داده شدند. به منظور ایجاد یکنواختی و همگن سازی ، عملیات حرارتی شامل حرارت دادن تا دمای ۵۰ درجه سانتیگراد و کوئنچ در روغن سپس عملیات بازپخت در ۳۵۰ درجه سانتیگراد و به مدت ۳۰ دقیقه اعمال گردید. میانگین سختی حاصل برابر مدت ۱۰۶ شد گردید. برای انجام عملیات

از بین رفته و سپس در محلول متیل اتیلن کتون (با فرمول شیمیایی C₈H₁₈O₆) چربی زدایی شدند و بعد از خشک شدن برای پوشش دهی آماده شدند. در جدول ۱ ترکیب شیمیایی فولاد مورد استفاده در این تحقیق که توسط کوانتومتر انجام شده، آورده شده است.

جدول ۱. ترکیب شیمیایی فولاد مورد استفاده برحسب درصد وزنی در این تحقیق.

Ni	С	Si	Mn	Р	S	Cr	Mo	Fe
1.3	0.08	0.28	0.5	0.01	0.00	1.4	0.16	balance

پس از انجام عملیات نیتراسیون سختی سطح نمونهها به حدود ۵۶ راکول سی رسید. سپس برای انجام عملیات پوششدهی ، ابتدا سطح نمونههای نیتریدی به مدت ۱۰ دقیقه تحت بمباران گاز آرگون قرار گرفته تا آلودگی های احتمالی موجود بر روی سطح نمونهها از بین بروند و در ادامه برای پوششدهی اقدام شد. از پیش ماده TiCl4 (مرک DC- برای عملیات نیتراسیون و پوشش دهی از دستگاه -DC PACVD با ولتاژ پایه در محدوده ۵۸۰ تا ۶۰۰ ولت استفاده شد. قبل از انجام عملیات پوشش دهی، ابتدا نمونه ها به منظور ایجاد چسبندگی بالا ، تحت پیش عملیات نیتراسیون پلاسمایی (PN) به مدت ۴ ساعت قرار گرفتند، از جریان N₂/H₂ به نسبت 1/3 در طی این عملیات استفاده شد

پوشش داده شده شامل پنج نمونه به همراه نمونه نیتریده شده در جدول ۲ ارائه شده است. بررسی ساختار بلوری پوششها توسط آزمون الگوی پراش پرتو ایکس(GIXRD) مدل PANalytical با تابش مس = λ مدل X'Pert برند PANalytical با تابش مس = λ مدل 1.54060 تحت زوایه ۱۰– ۸۰ درجه و 2 = ∞ ، زمان توقف ۱ ثانیه ای، ولتاژ ۴۰ کیلو ولت و جریان ۳۰ میلی آمپر و تحت گام ۰٫۰۴ درجه بر ثانیه مورد بررسی قرار گرفتند. آلمان) برای اعمال Ti و از گاز CH_4 جهت اعمال C به ترکیب پوشش ها استفاده شد و درصد خلوص تمام گازها بیش از ۹۹,۹۹٪ بود. ابتدا و با حضور ترکیب TiCl4/N2 سعی در ایجاد یک لایه نازک نیتریدی از نوع تیتانیوم در مدت زمان یک ساعت به عنوان لایه پایه گردید و در ادامه گاز CH_4 به مدت ۲ ساعت تحت جریان های متفاوت در محفظه دستگاه اعمال شد تعداد و مشخصات نمونههای

کد نمونه	چرخه کار	دما		ولتاژ(ولت)				
	(درصد)	(درجه						
		سانتیگراد)						
		-	Ar	N ₂	H ₂	TiCl ₄	CH_4	
نمونه ۰	33	500		100	300			600
نمونه ۱				40	160	12	0	
نمونه ۲	-	460	80				4	
نمونه ۳	- 33						8	580
نمونه ۴	-						12	
نمونه ۵	_						16	

جدول ۲. شرایط نیتراسیون و پوشش دهی نمونهها

الکترود کار، از پلاتین به عنوان الکترود شمارش و از کالومل اشباع (3.0 M KCI) به عنوان الکترود مرجع استفاده شد. آزمون پلاریزاسیون پتانسیودینامیکی با سرعت اسکن 1 MV/S با شروع از V 5.0- و پایان در V 5.0 انجام شد. آزمون EIS تحت شرایط مدار باز (OCP) در طیف وسیعی از فرکانس از HO T تا HZ 200 تحت جریان AC با دامنه سیگنال سینوسسی 10 kHz تحت جریان AC با دامنه سیگنال سینوسسی 10 mV انجام شد. سطح نمونههای پوشش بعد از آزمون خوردگی، توسط آب مقطر تمیز شده و بلافاصله پس از خشک شدن مورد بررسی مورفولوژیکی توسط میکروسکوپ الکترونی روبشی FEISEM

ترکیب شیمیایی، مورفولوژی و ضخامت پوششها توسط Mira 3-XMU TESCAN و مجهز به EDS انجام شد. زبری سطح پوششها (Sa) توسط میکروسکوپ نیروی اتمی AFM ساخت Instruments میکروسکوپ نیروی اتمی محلط ساخت الکتروشیمیایی نمونهها با استفاده از آزمون پلاریزاسیون پتانسیودینامیکی در دمای محیط تحت یک سیستم سه الکترود و در محلول 3.5%Wt NaCl مورد بررسی قرار گرفتند سطح نمونهها قبل از انجام آزمایش با آب مقطر دیونیزه شده و پس از خشک شدن ، آزمایش بر روی آنها بعدی می باشد و این موضوع با کاهش درصد Ti و افزایش

درصد Fe همراه بوده است و با افزایش درصد کربن در

نمونه ۵، تشکیل کاربید هم در اولویت بوده و درصد تیتانیم

 N_2 و CH_4 و CH_4 و CH_4 و

به هنگام یونیزاسیون در برخی موارد در درون فضای پلاسما

بر ضد یکدیگر عمل کرده و هرکدام باعث پس زده شدن

دیگری از ترکیب می شوند [۱۵]، به این خاطر محتوای

عناصری نظیر کربن و نیتروژن در پوششها و بخصوص در

پوششهای مربوط به نمونه ۲و۳ تغییرات قابل توجهی را

نشان می دهد. در شکل ۱ الگوی پراش XRD زیرلایه بعد

از انجام عمليات نيتراسيون پلاسمايي (نمونه •) نشان داده

شده است، با توجه به نمودار حاصله فاز نیترید آهن ایسیلن

فاز غالب لايه تشكيل شده مي باشد.

٣- نتايج و بحث

در جدول ۳ نتایج حاصل از آنالیز عنصری پوششها، ضخامت و زبری نمونههای پوشش داده شده، آورده شده است. با توجه به نتایج آنالیز عنصری پوششها ، در تمامی نمونهها (بجز نمونه ۱) عناصر تیتانیوم، نیتروژن و کربن ناشی از تجزیه شیمیایی ترکیبات مربوطه و از طریق گازهای حامل آن ها و Fe احتمالی نیز بواسطه کندوپاش حضور داشته و این می تواند نشانگر تشکیل رسوب احتمالی (C3N4)

ضخامت پوششها برای نمونههای ۳،۲ و ۴ با افزایش جریان گاز CH₄ کاهش یافته و بنظر می آید در این مرحله میل به تشکیل نیترید بیشتر بوده و تشکیل کاربید در اولویت

پوشش	نمونه ۱	نمونه ۲	نمونه ۳	نمونه ۴	نمونه ۵
كربن(درصد وزني)		8.24	11.58	12.13	11.35
تیتانیوم(درصدوزنی)	71.3	49.13	34.85	25.59	57.5
آهن(درصدوزنی)	2.81	18.81	24.25	35.88	19.2
اكسيژن(درصدوزني)		10.02	0.6	0.6	2.0
کلر(درصدوزنی)	0.31	0.07	1.0	1.14	0.55
نیتروژن(درصدوزنی)	25.34	13.73	27.72	24.66	9.4
نیکل(درصدوزنی)	0.24				
ضخامت (میکرومتر)	1.9	1.7	0.7	0.48	1.1
رافنس(نانومتر)	168	149	72	144	123

جدول ۳. نتایج آنالیز عنصری، ضخامت و زبری پوششها

شکل ۱. الگوی پراش اشعه ایکس نمونه نیتریدی شده (نمونه •).

شکل ۲. الگوی پراش اشعه ایکس از نمونههای پوشش داده شده.

شکل ۲، الگوی پراش پرتوکس نمونههای پوشش داده شده را نشان می دهد. پیک های عریض در زوایه حدود ۱۴ درجه مشاهده می شود که احتمالا مربوط به فاز آمورف بوده و عمدتا کربن أمورف مي باشند [١۶]. با بررسي نتايج مربوط به شکل ۲ مشاهده می شود علاوه بر فاز آمورف که در پوششها دیده میشود نیتریدهای آهن ، کربن و تیتانیوم هم در پوشش،ها تشکیل شده است. مورفولوژی سطحی نمونهها پس از پوششدهی در شکل ۳ نشان داده شده است. پوشش مربوط به نمونه ۱ از یک ساختار متراکم شبیه به شکل گل کلم برخوردار است و عیوبی مثل ترک های سطحی در این

پوشش مشاهده می شود. مورفولوژی گل کلمی در پوشش مربوط به نمونه ۲ نیز مشاهده می شود اما اندکی بزرگتر و نسبت به نمونه ۱ از تراکم و فشردگی بیشتری برخوردار است به نحوی که ترک های سطحی را بشکل مناسبی پوشانده ولی حفره های کوچکی بر روی سطح ظاهر شده اند. يوشش مربوط به نمونه ۳ يک مورفولوژي کاملا ظريف، بی عیب و نقص و بدون مورفولوژی گل کلمی را نشان می دهد و تنها پوششی است که ازموفولوژی سطحی مناسبی برخوردار مي باشد.

(ب)

(پ)

(الف)

شکل ۳. تصاویر میکروسکوپ الکترونی FESEM از مورفولوژی نمونه های پوشش داده شده الف) نمونه ۱، ب) نمونه ۲، پ) نمونه ۳،ت) نمونه ۴ **ث**) نمونه ۵.

لازم به ذکر است که مورفولوژی گل کلمی در اثر غیر یکنواختی در توزیع رسوبات و تجمع آنها و تشکیل جزیره هایی بصورت گل کلم ظاهر می شوند [۱۷]. شکل گیری چنین مورفولوژی هایی به چگونگی شارژ شدن سطح توسط ذرات یونی انرژی دار و ماهیت درونی اجزا در انجام واکنش های شیمیایی و نحوه چینش ذرات رسوب بستگی دارد. مورفولوژی گل کلمی در نمونههای ۴ و ۵ نیز دیده میشود ولى اندازه أن ها بزرگتر بوده و نواقص سطحي نيز بيشتر مي باشند که باعث میشوند پوشش از کیفیت سطحی مطلوبی برخوردار نباشد. در مرحله بعدی ، پوشش های ایجاد شده جهت بررسی رفتار الکتروشیمیایی در محلول 3.5%wtNaCl مورد بررسی قرار گرفتند. با توجه به شکل ۴ و نتایج حاصل از آن که در جدول ۴ آمده است ، مشاهده می شود که نمونه • در مقایسه با نمونه های دیگر از مقاومت يلاريز آسيون بالاترى برخوردار بوده و منحني پلاریزاسیون آن بالاتر از تمام پوشش،ها و بسیار بالاتر از نمونه خام قرار دارد. با توجه به محاسبات انجام شده براساس داده های الکتروشیمیایی و با استفاده از روابط (۱) و (۲) که نتایج آن در جدول ۴ آورده شده است بر اساس روابط مذكور مقاومت و تخلخل پوشش بصورت زير مي باشند [١٨] :

$$R_p = \frac{\beta_a \beta_c}{2.303 i_{corr}(\beta_a + \beta_c)} \tag{1}$$

$$P_i = (R_{ps}/R_p) \times 10^{-|\Delta E_{corr}|/\beta_a}$$
 (7)

که در آن (E_{corr}) پتانسیل خوردگی، (i_{corr}) چگالی جریان خوردگی ، (β_c) شیب شاخه کاتدی ، (β_a) شیب شاخه آندی ، (R_p) مقاومت پلاریزاسیون پوشش و (P_i) شاخص تخلخل هستند. همچنین R_{ps} مقاومت پلاریزاسیون نمونه بدون پوشش، β_a دامنه آندی نمونه بدون پوشش و ΔE_{corr} اختلاف پتانسیل خوردگی بین نمونه های پوشش داده شده و نمونه بدون پوشش می باشد.

مقادير يتاسيل خوردگي E_corr براي نمونه • بالاترين عدد و برابر ۳۱۸, ۰۰ بوده و سایر نمونهها و از بالا به پایین نمونه ۳، نمونه ۴، نمونه ۲، نمونه ۱ و نمونه ۵ و بترتیب برابر ۳۹۰. - ، ۴۱۳. - ، ۴۷۴. - ، ۴۷۷. - و ۵۰۱. - بوده و برای نمونه بدون پوشش دارای کمترین مقدار و برابر ۷۷۲ - بدست آمد. که بر اساس پتاسیل شیمیایی، نمونه • دارای بالاترین پایداری شیمیایی بوده و تمایل به خوردگی آن در مقایسه با بقیه نمونهها کمترین مقدار بوده و نمونه خام از کمترین پایداری شیمیایی برخوردار است. با توجه به شکل ۴ و جهت تعیین چگالی جریان خوردگی (i_corr) که از برون یابی دامنه های کاتدی و آندی برای هر نمونه بدست می آید مقادیر حاصل از نمودار برای نمونه خام بالاترین مقدار بوده و بعد از آن به ترتیب نمونه های ۵ ، ۴ ، ۳، ۲، ۲ و ۱ می باشند. بعبارتی نمونه خام دارای بالاترین سرعت خوردگی و نمونه ۱ از کمترین سرعت خوردگی برخوردار است. ۷۳ مهدوی و همکاران، بررسی رفتار الکتروشیمیایی و مورفولوژیکی، علوم و مهندسی سطح ۵۷ (۱۴۰۲)

جدول ۴. نتایج داده های پولاریزاسیون پوششها

کد نمونه	i _{corr} (A/cm²)	E _{corr} (Volt vs. SCE)	$\beta_a(mV)$	β _c (mV)	R_p (kΩ.cm ²)	P_i (%)
نمونه خام	3.27× 10 ⁻⁶	-0.772	70.1	84.4	5.10× 10 ⁶	-
نمونه نيتريدى	6.93× 10 ⁻⁷	-0.318	135.3	62.26	2.70× 10 ⁷	19.17
نمونه ۰	1.90× 10 ⁻⁶	-0.477	143.74	88.1	1.24× 10 ⁷	41.52
نمونه ۱	6.45× 10 ⁻⁷	-0.474	134.97	56.35	2.67×10 ⁷	19.29
نمونه ۲	8.28× 10 ⁻⁷	-0.390	104.07	44.68	1.64× 10 ⁷	31.49
نمونه ۳	9.13× 10 ⁻⁷	-0.413	120.08	54.91	1.79×10^{7}	28.83
نمونه ۴	1.58× 10 ⁻⁶	-0.501	93.32	56.24	9.64× 10 ⁶	53.37

شکل ۴. نتایج آزمایش پولاریزاسیون نمونههای پوشش داده شده.

برخوردار بوده است. در ادامه و جهت بررسی بهتر رفتار خوردگی پوششها آزمون الکتروشیمیایی امپدانس انجام شد. روش EIS به عنوان یک روش الکتروشیمیایی غیرمخرب و به عنوان یک تکنیک بسیار قدرتمند برای بررسی خصوصیات الکتروشیمیایی فیلمهای نازک شناخته شده است[۱۹]. نتایج حاصل از آزمون الکتروشیمیایی امپدانس براساس منحنی های نایکوییست و بد انجام شده است که در شکل های ۵ و ۶ نشان داده شده است. براساس نمودار ۵ پوششهای ۲٬۴ و ۰ در مقایسه با نمونههای دیگر مقاومت بهتری در برابر الکترولیت از خود نشان داده اند چرا که نیم دایره های مربوطه از قطر بیشتری برخوردار است. عدم همسو بودن داده ها در مقادیر بدست آمده از icorr و Ecorr در برخی نمونه ها ناشی از تراکم نقص های موجود بر سطح نمونه مثل زبری و منافذ می باشند که می توانند به عنوان مناطق مستعد خوردگی عمل کنند. با بررسی مورفولوژی سطح مربوط به نمونه ۲ در شکل ۳ برمی آید که جزایر گل کلمی و گرانول ها بصورت منظم در کنار هم شکل گرفته و از شکل گیری بیش از اندازه نقص ها جلوگیری شده است. به نظر می رسد شاخص های تخلخل و مساحت تماس الکترولیت با سطح پوشش از عوامل موثر بر خوردگی نمونهها بوده و بر این اساس پوشش مربوط به

شکل ۵: نمودار نایکویست مربوط به پوشش ها.

شکل 6 : منحنی های مربوط به امپدانس بد نمونه های پوشش داده شده

(Fs $n^{-}(1) m^{-}(1) e^{-}(1) e^{-}$

$$CPE = (Y_0 R_s^{1-n})^{1-n}$$
 (*)

chi-square مقادیر مربوط به هر مؤلفه با حداقل مقادیر chi-square معادیر مربوط به هر مؤلفه با حداقل مقادیر R_s (معادل $^{4-0}$) توسط نرم افزار R خلاصه شده است. R_s داده های بدست آمده در جدول ۵ خلاصه شده است. R_{po} یا نشان دهنده سهم اهمی از محلول الکترولیت و R_{pore} یا R_{pore} میانگر ممانعت از نفوذ الکترولیت به داخل پوشش میاشد.

شکل ۷. مدار معادل الکتریکی الف) مدار تک زمانی ب) مدار دو زمانی.

مقدار R_{po} مربوط به پوشش نمونه ۵ از بقیه کمتر بوده و بالاترین مقدار آن مربوط به پوشش نمونه ۳ است که بالاترین مقاومت را در برابر نفوذ عامل خورنده به پوشش دارا می باشد و این ناشی از کیفت سطحی مناسب ایجاد شده در در شکل ۶ نمودار بد مربوط به نمونه ها نشان داده شده است. در شکل ۶-الف تغییرات امپدانس ا Z بر حسب فرکانس بیانگر آن است که نمونههای • و ۳ از امپدانس بالاتری برخوردار هستند همچنین نمونههای خام و ۵ از کمترین مقاومت در برابر خوردگی برخوردار می باشند. در شکل -6 B تغییرات بد زاویه ای بر حسب فرکانس بیانگر آن است که در همه پوششها یک تک فرایند زمانی حاکم بوده بعبارتی پوششها با یک مکانیزم ثابت و مشخص در برابر الكتروليت واكنش نشان داده و خورده شده اند ولي در نمونه ۵ دو ثابت زمانی در جریان خوردگی اتفاق افتاده است که این احتمالا ناشی از آن است که پوشش ۵ در طول خوردگی به فصل مشترک پوشش/ زیر لایه رسیده است. با توجه به داده ها و نتایج حاصل از منحنی های EIS ، مدارهای الكتريكي معادل را مي توان مطابق شكل ٧(الف-ب) انجام داد. در مدار الکتریکی معادل (شکل ۷-الف)، Q_dl عنصر فاز ثابت (CPE) لايه دو گانه، R_ct مقاومت در مقابل انتقال شارژ و R_s مقاومت در مقابل محلول الکترولیت می باشند، از این مدار (تک ثابت زمان) در تحلیل داده های مربوط به زير لايه استفاده مي شود. همچنين مدار مناسب جهت تحليل داده های مربوط به پوشش ها و سطح نیتراته شده استفاده از مدار الکتریکی معادل با دو ثابت زمانی (شکل ۷–ب) می باشد که در آن، Q_coat (Q_co) نشان دهنده CPE یا ثابت پوشش، R_pore مقاومت در مقابل ایجاد حفره ، Q_dl نشان دهنده CPE یا ثابت لایه دوگانه و R_ct نیز مقاومت در مقابل انتقال شارژ می باشند. مدول امیدانس عنصر فاز ثابت را می توان از معادله زیر محاسبه کرد:

 $Z_Q=1/[Y_0(j\omega)^n]$ (7)

افزایش آن می تواند ناشی از افزایش محتوای عناصری نظیر آهن در ترکیب پوشش در اثر کندوپاش و متقابلا افزایش محتوای ترکیبات نیتریدی آهن باشد.

پوشش ۳ است. R_{ct} مربوط به مقاومت در مقابل انتقال بار که از شکل گیری لایه دوگانه بوجود می آید[۹]. کمترین مقدار R_{ct} مربوط به نمونه خام و بدون پوشش و بیشترین مقدار آن مربوط به نمونه نیتریدی شده و نمونه ۳ است. دلیل

کد نمونه	$R_s(\Omega.cm^2)$	$R_{ct}(\Omega.cm^2)$	$Q_{dl}(F.cm^{-2})$	$(CPE_n)_{dl}$	$R_{po}(\Omega.cm^2)$	$Q_{Co}(F.cm^{-2})$	$(CPE_n)_{co}$
نمونه خام	6.06	1.43E3	5.25 E-5	0.95			
نمونه ۰	24.96	5.72E5	1.52 E-5	0.83	29.48	4.62E-5	0.43
نمونه ۱	35.84	3.36E4	2.01 E-5	0.70	96.2	1.25E-4	0.83
نمونه ۲	15.24	4.22E4	1.28E-4	0.88	17.98	5.60E-5	0.45
نمونه ۳	30.40	2.04E5	9.50E-6	0.98	816.25	1.16E-4	0.75
نمونه ۴	23.25	2.70E5	7.28 E-5	0.77	426.5	1.81E-4	0.77
نمونه ۵	35.84	1.12E4	5.93E-4	0.77	128.8	6.27E-4	0.74

جدول ۵- داده های مربوط به نتایج آزمایش امپدانس نمونه های پوشش داده شده

(ب)

(الف)

(پ)

(ث)

شكل ٨. بررسي هاي مورفولوژيكي سطحي نمونه هاي خورده شده الف) TiCN4 ب) TiCN1 پ) TiCN3 ت) TiCN4 ث)

ظرفیت خازن دولایه (Q_{dl}) به عنوان معیاری از مقاومت لایه پسیو (خازن عکس مقاومت)، برای پوشش ۳ کمترین مقدار را نشان می دهد و از این موضوع می توان استنباط کرد که پوشش ۳ بهترین رفتار لایه پسیو را دارا می باشد.

در شکل ۸ رفتار خوردگی پوشش ها پس از آزمون پلاریزاسیون بوسیله FEISEM مجهز به آشکارساز EDS نشان داده شده است. در نمونه ۱، ۲ و ۵ فرسودگی سطحی نشان داده شده است. در نمونه ۱، ۲ و ۵ فرسودگی سطحی که بصورت تورم دیده میشود و ناشی از خوردگی است، مشهود است اما اندازه حفرات و گودال ها در پوشش ۲ مشهود است اما اندازه حفرات و گودال ها در پوشش ۲ بشکل قابل توجهی بزرگتر ولی تعداد آنها کمتر است (همان چیزی که به عنوان شاخص تخلخل مطرح است). ولی در سطح نمونه ۳ همینطور تا حدودی نمونه ۴، هیچگونه حفره یا گودالی مشاهده نمی شود بطوری که این پوششها رفتار منحصر به فردی را در مقایسه با سایر پوششها در مقابل خوردگی از خود به نمایش گذاشته اند.

با توجه به نتایج آنالیز عنصری ، که از نقاط بیشترین بر آمدگی و بیشترین فرورفتگی انجام شده نشان می دهد که کمترین مقدار نفوذ محلول در پوشش مربوط به نمونه ۳ اتفاق افتاده است بر این اساس و با توجه به سایر نتایج ، پوشش مربوط به نمونه ۳ بهترین رفتار را بعنوان لایه پسیو نسبت به بقیه پوشش ها دارا بوده و مقدار نفوذ محلول خوردنده در آن کم بوده است. همچنین مقاومت به خوردگی پوشش ها را می توان بر اساس درصد فاز آمورف موجود در ترکیب پوشش ، مورد تجزیه و تحلیل قرار داد [۲۰].

۴- نتیجه گیری

مورفولوژی و خواص الکتروشیمیایی فولاد -34CrNiMo 6 بعد از انجام نیتراسیون و پوششدهی سطحی مورد مطالعه

قرار گرفت و نتایج تحقیق و بررسی را می توان بصورت زیر خلاصه کرد.

I -بررسی های سطحی نشان داد با تنظیم گاز GH_4 و افزایش جریان آن ، به دلیل نوع و حجم مختلف ترکیبات تولیدی نظیر کاربیدها و نیتریدها، در ساختارهای سطحی پوششها تغییرات زیادی ایجاد می شود. طبق نتایج XRD ساختار TiN از حالت ساده FCC به ساختار تتراگونال تغییر فاز یافته است، تفکیک عناصر با آنالیز EDS نشان می دهد که این اتفاق بدلیل کاهش محتوای نیتروژن پس از اعمال گاز متان بوده که همچنین منجر به تولید فاز بهبود عملکرد است، این تغییر و تحولات ریزساختاری در بهبود عملکرد الکتروشیمیایی پوششها موثر بوده است.

۲- عملکرد الکتروشیمیایی پوشش های مربوط به نمونههای
 ۳ و ۴ پس از اعمال گاز CH₄ بشکل قابل توجهی بهبود
 یافته است، که بخشی از این افزایش مقاومت به خوردگی
 مربوط به نیترید آهن تشکیل شده درترکیب پوشش بوده
 است.

۳- بهترین عملکرد خوردگی مربوط به زیرلایه نیتریدی شده بوده چرا که از نیترید آهن اپسیلن شکل گرفته بود و از میان نمونههای پوشش داده شده با استفاده از جریان گاز متان ، می توان به نمونه ۳ اشاره کرد که دلیل مقاومت خوب آن در برابر خوردگی ناشی از ایجاد پوشش یکنواخت و عاری از عیوب سطحی نظیر حفرات و خلل و فرج بوده است.

مراجع

[1] Ricerby, D.S (David.S. Matthews.A. (Allen. Advanced Surface Coatings: a Handbook of Surface Engineering)) 1991.

[2] L.E. Gustavsson, H. Barankova, L. Bardos. Some properties of TiN films produced in the delayed fracture susceptibility of 34CrNiMo6 steel, and the opportunities for its application in ultra-high-strength bolts and fasteners. Mater. Sci. Eng. A 590 (2014) 66–73.

[12] Chunping Huang , Xin Lin, Haiou Yang, Fencheng Liu and Weidong Huang. Microstructure and Tribological Properties of Laser Forming Repaired 34CrNiMo6 Steel. Materials 2018, 11, 1722.

[13] A. Maniee, F. Mahboubi, R. Soleimani. The study of tribological and corrosion behavior of plasma nitrided 34CrNiMo6 steel under hot and cold wall conditions. Materials and Design 60 (2014) 599–604.

[14] Y. He, I. Apachitei , J. Zhou a , T. Walstock , J. Duszczyk. Effect of prior plasma nitriding applied to a hot-work tool steel on the scratch-resistant properties of PACVD TiBN and TiCN coatings. Surface & Coatings Technology 201 (2006) 2534–2539.

[15] Y.H. Cheng, T. Browne, B. Heckerman. Influence of CH4 fraction on the composition, structure, and internal stress of the TiCN coatings deposited by LAFAD technique. Vacuum 85 (2010) 89-94.

[16] M. M. Shafiei, Mehdi Divandari, Seyed
Mohammad Ali Boutorabi, Rahim Naghizadeh.
Characterization of TiCN Thin Films Deposited
by Dc-Pulsed PACVD Using Methane Precursor.
Materials Research. 2014; 17(6): 1651-1657.

[17] F. Mahboubi, K. Abdolvahabi. The effect of temperature on plasma nitriding behaviour of DIN 1.6959 low alloy steel. Vacuum 81 (2006) 239–243.

[18] Zhiwei Wu, Fei Zhou, Qiang Ma, Qianzhi Wang, Zhifeng Zhou and Lawrence Kwok-Yan Li. Tribological and electrochemical properties of Cr–Si–C–N coatings in artificial seawater. RSC Adv., 2016, 6, 76724–76735.

[19] S. Balasubramanian, A. Ramadoss, A. Kobayashi, J. Muthirulandi. Nanocomposite Ti–Si–N Coatings Deposited by Reactive dc

hollow cathode and microwave ECR hybrid plasma system. Surf. Coat. Technol. 201 (2006) 1464.

[3] H.E. Rebenne, D.G. Bhat. Review of CVD TiN coatings for wear-resistant applications: deposition processes, properties and performance. Surf. Coat. Technol. 63 (1994) 1.

[4] S. Zhang, W. Zhu, J. Mater. TiN coating of tool steels: a review. Process. Technol. 39 (1993) 165.

[5] M.Y. Al-Jaroudi, H.T.G. Hentzell, S. Gong, A. Bergton. The influence of titanium nitride reactive magnetron sputtering on hardened tool steel surfaces. Thin Solid Films 195 (1991) 63.

[6] L.E. Gustavsson, H. Barankova, L. Bardos. Some properties of TiN films produced in hollow cathode and microwave ECR hybrid plasma system. Surf. Coat. Technol. 201 (2006) 1464.

[7] S.J. Bull, D.G Bhat , M.H. Staia. Properties and performance of commercial TiCN coatings. Part 2: tribological performance. Surface and Coatings Technology 163 –164 (2003) 507–514.

[8] M. Rashidi, M. Tamizifar, S.M. Ali Boutorabi, Characteristics of TiAlCN ceramic coatings prepared via pulsed-DC PACVD, part I: Influence of precursors' ratio, Ceramics International (2019), S0272-8842(19)31816-4.

[9]F.Movassagh-Alanagh, Amir Abdollahzadeh, Masoud Asgari, Mohammad Amin Ghaffari. Influence of Si content on the wettability and corrosion resistance of nanocomposite TiSiN films deposited by pulsed-DC PACVD. Journal of Alloys and Compounds 739 (2018) 780-792.

[10] R. Branco, J.D. Costa, F.V. Antunes. Lowcycle fatigue behaviour of 34CrNiMo6 high strength steel. Theor. Appl. Fract. Mech. 58 (2012) 28-34.

[11] A. Kuduzović, M. C. Poletti, C. Sommitsch, M. Domankova, S. Mitsche. Investigations into

Magnetron Sputtering for Biomedical Applications. J. Am. Ceram. Soc. 95 (2012) 2746-2752.

[20]Z. Bangwei, Xie Haowen. Effect of alloying elements on the amorphous formation and corrosion resistance of electroless Ni–P based alloys. Materials Science and Engineering A281 (2000) 286–291.